Advertisement

Chinese Science Bulletin

, Volume 49, Issue 8, pp 757–765 | Cite as

Simulation methods of ion sheath dynamics in plasma source ion implantation

  • Jiuli Wang
  • Guling Zhang
  • Younian Wang
  • Yuanfu Liu
  • Chizi Liu
  • Size Yang
Reviews

Abstract

Progress of the theoretical studies on the ion sheath dynamics in plasma source ion implantation (PSII) is reviewed in this paper. Several models for simulating the ion sheath dynamics in PSII are provided. The main problem of nonuniform ion implantation on the target in PSII is discussed by analyzing some calculated results. In addition, based on the relative researches in our laboratory, some calculated results of the ion sheath dynamics in PSII for inner surface modification of a cylindrical bore are presented. Finally, new ideas and tendency for future researches on ion sheath dynamics in PSII are proposed.

Keywords

plasma sheath simulation plasma source ion implantation fluid model particle simulation inner surface plasma source ion implantation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conrad, J. R., Sheath thickness and potential profiles of ion-matrix sheaths for cylindrical and spherical electrodes, J. Appl. Phys., 1987, 62(3): 777–779.CrossRefGoogle Scholar
  2. 2.
    Conrad, J. R., Radtke, J. L., Dodd, R. A. et al., Plasma source ion implantation technique for surface modification of materials, J. Appl. Phys., 1987, 62(11): 4591–4596.CrossRefGoogle Scholar
  3. 3.
    Walter, K. C., Nitrogen plasma source ion implantation of Aluminum, J. Vac. Sci. Tech. B, 1994, 12(2): 945–950.CrossRefGoogle Scholar
  4. 4.
    Walter, K. C., Scheuer, J. T., Mcintyre, P. C. et al., Increased wear resistance of electrodeposited chromium through applications of plasma source ion implantation techniques, Surf. Coat. Tech., 1996, 85(1–2): 1–6.CrossRefGoogle Scholar
  5. 5.
    Wang, W., Booske, J. H., Baum, C. et al., Modification of bearing steel surface by nitrogen plasma source ion implantation for corrosion protection, Surf. Coat. Tech., 1999, 111(1): 97–102.CrossRefGoogle Scholar
  6. 6.
    Tan, L., Dodd, R. A., Crone, W. C., Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation, Biomater., 2003, 24(22): 3931–3939.CrossRefGoogle Scholar
  7. 7.
    Lieberman, M. A., Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing, New York: John Wiley & Sons, 1994, 137.Google Scholar
  8. 8.
    Donnelly, I. J., Watterson, P. A., Ion-matrix sheath structure around cathodes of complex shape, J. Appl. D: Appl. Phys., 1989, 22: 90.CrossRefGoogle Scholar
  9. 9.
    Sheridan, T. E., Ion-matrix sheath in a cylindrical bore, J. Appl. Phys., 1993, 74(8): 4903–4906.CrossRefGoogle Scholar
  10. 10.
    Sheridan, T. E., The ion-matrix sheath around a round hole, Plasma Sources Sci. Technol., 1995, 4: 527–533.CrossRefGoogle Scholar
  11. 11.
    Lieberman, M. A., Model of plasma immersion ion implantation, J. Appl. Phys., 1989, 66(7): 2926–2929.CrossRefGoogle Scholar
  12. 12.
    Scheuer, J. T., Shamim, M., Conrad, J. R., Model of plasma source ion implantation in planar, cylindrical, and spherical geometries, J. Appl. Phys., 1990, 67(3): 1241–1245.CrossRefGoogle Scholar
  13. 13.
    Vahedi, V., Lieberman, M. A., Alves, M. V. et al., A one-dimensional collisional model for plasma-immersion ion implantation, J. Appl. Phys., 1991, 69(4): 2008–2014.CrossRefGoogle Scholar
  14. 14.
    Stewart, R. A., Lieberman, M. A., Model of plasma immersion ion implantation for voltage pulses finite rise and fall times, J. Appl. Phys., 1991, 70(7): 3481–3487.CrossRefGoogle Scholar
  15. 15.
    Wang, D. Z., Ma, T. C., Deng, X. L., Model of collisional sheath evolution in plasma source ion implantation, J. Appl. Phys., 1993, 74(4): 2986–2988.CrossRefGoogle Scholar
  16. 16.
    Widner, M. M., Alexeff, I., Jones, W. D. et al., Ion acoustic wave excitation and ion sheath evolution, Phys. Fluids, 1970, 13(10): 2532–2540.CrossRefGoogle Scholar
  17. 17.
    Emmert, G. A., Henry, M. A., Numerical simulation of plasma sheath expansion, with applications to plasma source ion implantation, J. Appl. Phys., 1992, 71(1): 113–117.CrossRefGoogle Scholar
  18. 18.
    Hong, M. P., Emmert, G. A., Two-dimensional fluid modeling of time-dependent plasma sheath, J. Vac. Sci. Technol. B, 1994, 12(2): 889–896.CrossRefGoogle Scholar
  19. 19.
    Sheridan, T. E., Alport, M. J., Two-dimensional model of ion dynamics during plasma source ion implantation, Appl. Phys. Lett., 1994, 64(14): 1783–1785.CrossRefGoogle Scholar
  20. 20.
    Sheridan, T. E., Pulsed-sheath ion dynamics in a trench, J. Phys. D: Appl. Phys., 1995, 28: 1094–1098.CrossRefGoogle Scholar
  21. 21.
    Alves, M. A., Vahedi, V., Birdsall, C. K., RF plasma processes in cylindrical models and plasma immersion ion implantation, Bull. Am. Phys. Soc., 1989, 34: 2028.Google Scholar
  22. 22.
    Faehl, R., Volder, B. D., Wood, B., Application of particle-in-cell simulation to plasma source ion implantation, J. Vac. Sci. Technol. B, 1994, 12(2): 884–888.CrossRefGoogle Scholar
  23. 23.
    Sheridan, T. E., Particle-in-cell simulation of the pulsed sheath in a trench, IEEE Trans. Plasma Sci., 1996, 24(1): 57–58.CrossRefGoogle Scholar
  24. 24.
    Sheridan, T. E., Ion focusing by an expanding, two-dimensional plasma sheath, Appl. Phys. Lett., 1996, 68(14): 1918–1920.CrossRefGoogle Scholar
  25. 25.
    Kwok, D. T. K., Zeng, X. C., Chan, C. et al., Direct current plasma implantation using a grounded conducting grid, J. Appl. Phys., 2000, 87(9): 4094–4097.CrossRefGoogle Scholar
  26. 26.
    Kwok, D. T. K., Zeng, Z. M., Chu, P. K. et al., Hybrid simulation of sheath and ion dynamics of plasma implantation into ring-shaped targets, J. Phys. D: Appl. Phys., 2001, 34: 1091–1099.CrossRefGoogle Scholar
  27. 27.
    Kwok, D. T. K., Fu, R. K. Y., Chu, P. K., Two-dimensional particle-in-cell plasma immersion ion implantation simulation of gear/windmill geometry in cylindrical co-ordinates along the (r - θ) plane, Surf. Coat. Tech., 2002, 156: 97–102.CrossRefGoogle Scholar
  28. 28.
    Rauschenbach, B., Mandl, S., Plasma-sheath expansion around trenches in plasma immersion ion implantation, Nucl. Instr. and Meth. in Phys. Res. B, 2003, 206: 803–807.CrossRefGoogle Scholar
  29. 29.
    Wang, D. Z., Ma, T. C., Gong, Y., A Monte Carlo simulation model for plasma source ion implantation, J. Appl. Phys., 1993, 73(9): 4171–4175.CrossRefGoogle Scholar
  30. 30.
    Wang, D. Z., Ma, T. C., Deng, X. L., Energy and angle distributions of ions striking a spherical target in plasma source ion implantation, J. Appl. Phys., 1994, 75(3): 1335–1339.CrossRefGoogle Scholar
  31. 31.
    Liu, C. S., Wang, D. Z., Monte Carlo simulation of ions inside a cylindrical bore for plasma source ion implantation, J. Appl. Phys., 2002, 91(1): 32–35.CrossRefGoogle Scholar
  32. 32.
    Miyagawa, Y., Ikeyama, M., Miyagawa, S. et al., Computer simulation of plasma for plasma immersed ion implantation and deposition with bipolar pulses, Nucl. Instr. and Meth. in Phys. Res. B, 2003, 206: 767–771.CrossRefGoogle Scholar
  33. 33.
    Sun, M., Zhu, P., Yang, S. Z. et al., A model of plasma source ion implantation for inner surface modification, J. Phys. D: Appl. Phys., 1996, 29: 274–276.CrossRefGoogle Scholar
  34. 34.
    Xia, Z. Y., Chan, C., Modeling and experiment on plasma source ion implantation, J. Appl. Phys., 1993, 73(8): 3651–3656.CrossRefGoogle Scholar
  35. 35.
    Shamim, M., Scheuer, J. T., Conrad, J. R., Measurments of spatial and temperal sheath evolution for spherical and cylindrical geometries in plasma source ion implantation, J. Appl. Phys., 1991, 69(5): 2904–2908.CrossRefGoogle Scholar
  36. 36.
    Birdsall, C. K., Langdon, A. B., Plasma Physics via Computer Simulation, New York: McGraw-Hill, 1985.Google Scholar
  37. 37.
    Hockney, R. W., Eastwood, J. W., Computer Simulation Using Particles, New York: McGraw-Hill, 1981.Google Scholar
  38. 38.
    Sheridan, T. E., Pulsed sheath dynamics in a small cylindrical bore, Phys. Plasmas, 1994, 1(10): 3485–3489.CrossRefGoogle Scholar
  39. 39.
    Sheridan, T. E., Transient sheath in a cylindrical bore for finite-rise-time voltage pulses, Sur. Coat. Technol., 1996, 85: 204–208.CrossRefGoogle Scholar
  40. 40.
    Sheridan, T. E., Sheath expansion into a large bore, J. Appl. Phys., 1996, 80(1): 66–69.CrossRefGoogle Scholar
  41. 41.
    Sun, M., Yang, S. Z., Li, B., New method of tubular material inner surface modification by plasma source ion implantation, J. Vac. Sci. Technol. A, 1996, 14(2): 367–369.CrossRefGoogle Scholar
  42. 42.
    Sun, M., Yang, S. Z., Chen, X. C., Measurements of spatial and temporal sheath evolution inside tubular material for inner surface ion implantation, J. Vac. Sci. Technol. A, 1996, 14(6): 3071–3074.CrossRefGoogle Scholar
  43. 43.
    Zeng, X. C., Tang, B. Y., Chu, P. K., Improving the plasma immersion ion implantation impact energy inside a cylindrical bore by using an auxiliary electrode, Appl. Phys. Lett., 1996, 69(25): 3815–3817.CrossRefGoogle Scholar
  44. 44.
    Zeng, X. C., Liu, A. G., Kwok, T. K. et al., Pulsed sheath dynamics in a small cylindrical bore with an auxiliary electrode for plasma immersion ion implantation, Phys. Plasma, 1997, 4(12): 4431–4434.CrossRefGoogle Scholar
  45. 45.
    Zeng, X. C., Kwok, T. K., Liu, A. G. et al., Plasma immersion ion implantation of the interior surface of a small cylindrical bore using an auxiliary electrode for finite rise-time voltage pulses, IEEE Trans. Plasma Sci., 1998, 26(2): 175–180.CrossRefGoogle Scholar
  46. 46.
    Zeng, X. C., Kwok, T. K., Liu, A. G. et al., Plasma immersion ion implantation of the interior surface of a large cylindrical bore using an auxiliary electrode, J. Appl. Phys., 1998, 83(1): 44–49.CrossRefGoogle Scholar
  47. 47.
    Liu, B., Liu, C. Z., Yang, S. Z. et al., A new method for inner surface modification by plasma source ion implantation, Nucl. Instr. and Meth. in Phys. Res. B, 2001, 184: 644–648.CrossRefGoogle Scholar
  48. 48.
    Liu, B., Zhang, G. L., Chen, D. J. et al., Inner surface coating of TiN by the grid-enhanced plasma source ion implantation technique, J. Vac. Sci. Technol. A, 2001, 19(6): 2958–2962.CrossRefGoogle Scholar
  49. 49.
    Zhang, G. L., Wang, J. L., Yang, W. B. et al., TiN coating for inner surface modification by grid enhanced plasma source ion implantation, Acta Phys. Sin. (in Chinese), 2003, 52(9): 2213–2218.Google Scholar
  50. 50.
    Wang, J. L., Zhang, G. L., Fan, S. H. et al., Pulsed ion-sheath dynamics in a cylindrical bore for inner surface grid-enhanced plasma source ion implantation, Chin. Phys. Lett., 2002, 19(10): 1473–1475.CrossRefGoogle Scholar
  51. 51.
    Wang, J. L., Zhang, G. L., Fan, S. H. et al., Influence of grid and target radius and ion-neutral collisions on grid-enhanced plasma source ion implantation process, J. Phys. D: Appl. Phys., 2003, 36: 1192–1197.CrossRefGoogle Scholar
  52. 52.
    Tang, B. Y., Fetherston, R. P., Shamim, M. et al., Measurement of ion species ratio in the plasma source ion implantation process, J. Appl. Phys., 1993, 73(9): 4176–4180.CrossRefGoogle Scholar
  53. 53.
    Wang, J. L., Zhang, G. L., Liu, Y. F. et al., Influence of ion species ratio on grid-enhanced plasma source ion implantation, Chin. Phys., 2004, 13(1): 458–463.Google Scholar
  54. 54.
    Tian, X. B., Kwok, D. T. K., Chu, P. K. et al., Nitrogen depth profiles in plasma implanted stainless steel, Phys. Lett. A, 2002, 299(5–6): 577–580.CrossRefGoogle Scholar
  55. 55.
    Ziegler, J. F., Biersack, J. P., Littmark, V. et al., The Stopping and Range of Ions in Solids, New York: Pergamon, 1986.Google Scholar
  56. 56.
    Chen, A., Firmiss, J., Conrad, J. R. et al., Dose analysis of nitrogen plasma source ion implantation treatment of Titanium alloys, J. Vac. Sci. Technol. B, 1994, 12(2): 918–922.CrossRefGoogle Scholar
  57. 57.
    Shamim, M. M., Scheuer, J. T., Fetherston, R. P. et al., Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation, J. Appl. Phys., 1991, 70(9): 4756–4759.CrossRefGoogle Scholar
  58. 58.
    Cluggish, B. P., Munson, C. P., Secondary electron enhanced discharges in plasma source ion implantation, J. Appl. Phys., 1998, 84(11): 5945–5955.CrossRefGoogle Scholar
  59. 59.
    Qin, S., Bradley, M. P., Kellerman, P. L. et al., Measurements of secondary electron emission and plasma density enhancement for plasma exposed surfaces using an optically isolated Faraday cup, Rev. Sci. Instrum., 2002, 73(3): 1153–1156.CrossRefGoogle Scholar
  60. 60.
    Nakamura, K., Tanaka, M., Sugai, H. et al., Energy measurements of sheath-accelerated secondary electrons in plasma immersion ion implantation, Surf. Coat. Technol., 2003, 169: 57–60.CrossRefGoogle Scholar
  61. 61.
    Tang, D. L., Fu, R. K. Y., Influence of magnetic field on magnetized hydrogen plasmas in plasma immersion ion implantation, Nucl. Instr. and Meth. in Phys. Res. B, 2003, 206: 808–812.CrossRefGoogle Scholar
  62. 62.
    Keidar, M., Monteiro, O. R., Anders, A. et al., Magnetic field effect on the sheath thickness in plasma immersion ion implantation. Appl. Phys. Lett., 2002, 81: 1183–1185.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Jiuli Wang
    • 1
  • Guling Zhang
    • 1
  • Younian Wang
    • 2
  • Yuanfu Liu
    • 1
  • Chizi Liu
    • 1
  • Size Yang
    • 1
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Materials Modification by Laser, Ion, and Electron BeamsDalianChina

Personalised recommendations