Virchows Archiv B

, Volume 19, Issue 1, pp 325–336 | Cite as

Cellular and subcellular effects of ischemia on the pancreatic acinar cell

In vitro studies of rat tissue
  • Raymond T. Jones
  • Benjamin F. Trump


Rat pancreatic slices were incubated at 37°Cin vitro, in order to determine if complete ischemia would reproduce the subcellular alterations seen in human pancreatic acinar cells following shock. The ultrastructural alterations observed were similar to those seen in humans and in animal models of hypovolemic shock. These changes ranged from dilated endoplasmic reticulum and swollen mitochondria (reversible changes) to mitochondrial flocculent densities and later stages (evidence of cell death). In thisin vitro study the pancreas remained in an apparently reversible stage longer than liver, heart, kidney, and brain treated similarly. However, once the pancreatic cells died, necrotic breakdown occurred very rapidly, perhaps due to intracellular release of lysosomal and zymogen granule hydrolases.


Acinar Cell Pancreatic Acinar Cell Autophagic Vacuole Zymogen Granule Ehrlich Ascites Tumor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. W. M.: A p-dimethyl aminobenzaldehyde nitrite method for the histochemical demonstration of tryptophane and related compounds. J. clin. Path.10, 56–63 (1957)PubMedCrossRefGoogle Scholar
  2. Arstila, A. U., Hirsimaki, P., Trump, B. F.: Studies on the subcellular pathophysiology of sublethal chronic injury. Beitr. Path. Bd.152, 211–242 (1974)Google Scholar
  3. Ekholm, R., Zelander, T., Edlund, Y.: The ultrastructural organization of the rat exocrine pancreas. I. Acinar cells. J. Ultrastruct. Res.7, 61–72 (1962)CrossRefGoogle Scholar
  4. Ericsson, J. L. E.: Mechanism of cellular autophagy. In: J. T. Dingle and H. B. Fell (eds.), Lysosomes in biology and pathology, vol. 2, p. 345. Amsterdam: North-Holland, 1969Google Scholar
  5. Farquhar, M. G., Palade, G.E.: Cell junctions in amphibian skin. J. Cell Biol.26, 263–291 (1965)PubMedCrossRefGoogle Scholar
  6. Frasca, J. M., Parks, V. S.: A routine technique for double-staining ultrathin sections using uranyl and lead salts. J. Cell Biol.25, 157–161 (1965)PubMedCrossRefGoogle Scholar
  7. Garcia, J. H., Kalimo, H., Kamijyo, Y., Lesser, M. J., Trump, B. F.: Comparison between regional cerebral ischemia and total cerebral ischemia. An ultrastructural study in the cat. Proc. Electron Soc. Amer.31, 656–657 (1973)Google Scholar
  8. Herdson, P. B., Kaltenbach, J. P., Jennings, R. B.: Fine structural and biochemical changes in dog myocardium during autolysis. Amer. J. Path.57, 539–558 (1969)PubMedGoogle Scholar
  9. Ito, S.: The pancreas. In: R. O. Greep and L. Weiss (eds.), Histology, 3rd ed., p. 645. New York: McGraw Hill 1973Google Scholar
  10. Jones, R. T., Garcia, J. H., Mergner, W. J., Pendergrass, R. E., Valigorsky, J. M., Trump, B. F.: Cellular and subcellular effects of shock on the pancreatic acinar cell. I. Studies in the human. Arch. Path. (in press) 1975Google Scholar
  11. Jones, R. T., Pendergrass, R. E., Trump, E. F.; Pancreatic acinar cell injury at the ultrastructural level. Fed. Proc.33, 639 (1974)Google Scholar
  12. Laiho, K. U., Shelburne, J. D., Trump, B. F.: Observations on cell volume, ultrastructure, mitochondrial conformation and vital-dye uptake in Ehrlich ascites tumor cells: effects of inhibiting energy production and function of the plasma membrane. Amer. J. Path.65, 203–230 (1971)PubMedGoogle Scholar
  13. Lefer, A. M.: Blood-borne humoral factors in the pathophysiology of circulatory shock. Circulat. Res.32, 129–139 (1973)PubMedGoogle Scholar
  14. Lefer, A. M., Glenn, T. M.: Role of the pancreas in the pathogenesis of circulatory shock. In: L. B. Hinshaw and B. G. Cox (eds.), The Fundamental mechansisms of shock, p. 311. New York: Plenum 1972Google Scholar
  15. Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol.9, 409–414 (1961)PubMedCrossRefGoogle Scholar
  16. Moore, R. A.: A textbook of pathology, 2nd ed. Philadelphia: Saunders 1951Google Scholar
  17. Nevalainen, T. J.: Effects of pilocarpine stimulation on rat pancreatic acinar cells. Acta path. microbiol. scand., Suppl.210, 1–43 (1970)Google Scholar
  18. Okuda, M., Yamada, T., Hosono, K.: Activity of a myocardial depressant factor and associated lysosomal abnormalities in experimental cardiogenic shock. Circ. Shock1, 17–29 (1974)Google Scholar
  19. Spath, J. A., Gorczynski, R. J., Lefer, A.M.: Pancreatic perfusion in the pathophysiology of hemorrhagic shock. Amer. J. Physiol.226, 443–451 (1974)PubMedGoogle Scholar
  20. Trump, B. F., Croker, B. P., Mergner, W. J.: The role of energy metabolism, ion, and water shifts in the pathogenesis of cell injury. In: G.W. Richter and D. G. Scarpelli (eds.), Cell membranes: Biological and pathological aspects, p. 84. Baltimore: Williams & Wilkins 1971Google Scholar
  21. Trump, B. F., Goldblatt, P. J., Stowell, R. E.: Studies of mouse liverin vitro. Ultrastructural alterations in the mitochondria of hepatic parenchymal cells. Lab. Invest.14, 343–371 (1965)PubMedGoogle Scholar
  22. Trump, B. F., Laiho, K. A., Mergner, W. J., Arstila, A. U.: Studies on the pathophysiology of acute lethal cell injury. Beitr. Path. Bd.152, 243–271 (1974)Google Scholar
  23. Venable, J. H., Coggeshall, R.: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol.25 (1), 407–408 (1965)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Raymond T. Jones
    • 1
  • Benjamin F. Trump
    • 1
  1. 1.Department of PathologyUniversity of Maryland School of MedicineUSA

Personalised recommendations