Virchows Archiv B

, 13:103 | Cite as

Actin-like filaments in ehrlich ascites tumor cells and their reaction with heavy meromyosin

  • Be. I. Kristensen
  • L. O. Simonsen
  • L. Pape


Two types of filaments were found in Ehrlich ascites tumor cells, both in sections of intact cells and in negatively stained material from cells disrupted by ultrasonics.
  1. 1.

    Thin 50–60 Å diameter filaments in parallel bundles in the numerous microvilli, and in networks and loose strands in the cortical cytoplasm.

  2. 2.

    Thicker 80–100 Å filaments deeper in the cytoplasm often in bundles near the nucleus.


In sections both types of filaments were more prominent and abundant following glycerol extraction, presumably due to demasking of the filaments by extraction of background material.

The reactivity of the filaments with heavy meromyosin (HMM) from skeletal muscle was investigated. The actin-like nature of the thin filaments was demonstrated by the formation of typical arrowhead complexes, visualized in sections of glycerol extracted cells as well as in negatively stained preparations of isolated filaments from disrupted cells. The 80–100 Å filaments showed no reaction with HMM.

The thin microfilaments are assumed to be involved in some contractile system in these cells, albeit the functional role is unknown.


Thin Filament Contractile Protein Thick Filament Ehrlich Ascites Tumor Cell Contractile System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allison, A. C., Davies, P., Petris, S. de: Role of contractile microfilaments in macrophage movement and endocytosis. Nature (Lond.) New Biol.232, 153–155 (1971).Google Scholar
  2. Behnke, O., Emmersen, J.: Structural identification of thrombosthenin in rat megakaryo-cytes. Scand. J. Haemat.9, 130–137 (1972).PubMedGoogle Scholar
  3. Behnke, O., Kristensen, B. I., Nielsen, L. E.: Electron microscopical observations on actinoid and myosinoid filaments in blood platelets. J. Ultrastruct. Res.37, 351–369 (1971).PubMedCrossRefGoogle Scholar
  4. Bettex-Galland, M., Probst, E., Behnke, O.: Complex formation with heavy meromyosin of the isolated actin-like component of thrombosthenin, the contractile protein from blood platelets. J. molec. Biol.68, 533–535 (1972).PubMedCrossRefGoogle Scholar
  5. Bhisey, A. N., Freed, J. J.: Ameboid movement induced in cultured macrophages by colchicine or vinblastine. Exp. Cell Res.64, 419–429 (1971).PubMedCrossRefGoogle Scholar
  6. Burton, P. R., Kirkland, W. L.: Actin detected in mouse neuroblastoma cells by binding of heavy meromyosin. Nature (Lond.) New Biol.239, 244–246 (1972).Google Scholar
  7. Forer, A., Emmersen, J., Behnke, O.: Cytochalasin B: Does it affect actin-like filaments? Science175, 774–776 (1972).PubMedCrossRefGoogle Scholar
  8. Franks, L. M., Riddle, P. N., Seal, P.: Actin-like filaments and cell movement in human ascites tumour cells. An ultrastructural and cinemicrographic study. Exp. Cell Res.54, 157–162 (1969).PubMedCrossRefGoogle Scholar
  9. Goldman, R. D.: The effects of cytochalasin B on the microfilaments of baby hamster kidney (BHK-21) cells. J. Cell Biol.52, 246–254 (1972).PubMedCrossRefGoogle Scholar
  10. Hempling, H. G., Stewart, C. C., Gasic, G.: The effect of exogenous ATP on the electrolyte content of TA3 ascites tumor cells. J. cell. Physiol.73, 133–140 (1969).PubMedCrossRefGoogle Scholar
  11. Herdson, P. B., Kaltenbach, J. P.: Fine structural Changes in hypotonically treated Ehrlich ascites tumor cells. Exp. Cell Res.42, 74–83 (1966).PubMedCrossRefGoogle Scholar
  12. Hoffmann-Berling, H.: Other mechanisms producing movements. In: Comparative biochemistry, vol. 2, Free energy and biological function (eds. M. Florkin and H. S. Mason), p. 341–370. New York-London: Academic Press 1960.Google Scholar
  13. Huxley, H. E.: Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. molec. Biol.7, 281–308 (1963).Google Scholar
  14. Ishikawa, H., Bischoff, R., Holtzer, H.: Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol.43, 312–328 (1969).PubMedCrossRefGoogle Scholar
  15. Jones, P. C. T.: A contractile protein model for cell adhesion. Nature (Lond.)212, 365–369 (1966).CrossRefGoogle Scholar
  16. Kleinzeller, A.: The volume regulation in some animal cells. Arch. Biol. (Liège)76, 217–232 (1965).Google Scholar
  17. Komnick, H., Stockem, W., Wohlfarth-Bottermann, K. E.: Ursachen, Begleitphänomene und Steuerung zellulärer Bewegungserscheinungen. In: Fortschritte der Zoologie, Bd.21 (Hrsg. M. Lindauer), S. 1–74. Stuttgart: Fischer 1972.Google Scholar
  18. Kristensen, B. I., Nielsen, L. E., Rostgaard, J.: A two-filament system and interaction of heavy meromyosin (HMM) with thin filaments in smooth muscle. Z. Zellforsch.122, 350–356 (1971).PubMedCrossRefGoogle Scholar
  19. Mitchell, R. F.: A study of the cytoplasmic matrix of ascites tumour cells. Exp. Cell Res.66, 137–144 (1971).PubMedCrossRefGoogle Scholar
  20. Mommaerts, W. F. H. M.: Chemical investigation of muscular tissues. In: Methods in medical research, vol.7 (ed. J. V. Warren), p. 1–59. Chicago: The Year Book Publishers 1958.Google Scholar
  21. Moore, J., Kieler, J., Biczowa, B.: Comparative studies of a near-tetraploid and a near-diploid line of Ehrlich’s ascites tumor propagatedin vivo andin vitro. II. Cytology and transplantability. Europ. J. Cancer4, 81–95 (1968).Google Scholar
  22. Neifakh, S. A., Avramov, J. A., Gaitskhoki, V. S., Kazakova, T. B., Monakhov, N. K., Repin, V. S., Turovski, V. S., Vassiletz, I. M.: Mechanism of the controlling function of mitochondria. Biochim. biophys. Acta (Amst.)100, 329–343 (1965).Google Scholar
  23. Orci, L., Gabbay, K. H., Malaisse, W. J.: Pancreatic beta-cell web: Its possible role in insulin secretion. Science175, 1128–1130 (1972).PubMedCrossRefGoogle Scholar
  24. Orr, T. S. C., Hall, D. E., Allison, A. C.: Role of contractile microfilaments in the release of histamine from mast cells. Nature (Lond.)236, 350–351 (1972).CrossRefGoogle Scholar
  25. Rash, J. E., McDonald, T. F., Sachs, H. G., Ebert, J. D.: Muscle-like arrays in a fibroblast line. Nature (Lond.) New Biol.237, 160 (1972).Google Scholar
  26. Rebhun, L. I.: Polarized intracellular particle transport: Saltatory movements and cytoplasmic streaming. Int. Rev. Cytol.32, 93–137 (1972).PubMedCrossRefGoogle Scholar
  27. Roberts, J., Quastel, J. H.: Particle uptake by polymorphonuclear leucocytes and Ehrlich ascites-carcinoma cells. Biochem. J.89, 150–156 (1963).PubMedGoogle Scholar
  28. Rostgaard, J., Kristensen, B. I., Nielsen, L. E.: Electron microscopy of filaments in the basal part of rat kidney tubule cells, and theirin situ interaction with heavy meromyosin. Z. Zeilforsch.132, 497–521 (1972).CrossRefGoogle Scholar
  29. Ryser, H., Caulfield, J. B., Aub, J. C.: Studies on protein uptake by isolated tumor cells. I. Electron microscopic evidence of ferritin uptake by Ehrlich ascites tumor cells. J. Cell Biol.14, 255–268 (1962).PubMedCrossRefGoogle Scholar
  30. Schroeder, T. E.: Functional and biochemical aspects of contractile ring filaments in HeLa cells. J. Cell Biol.47, 183a (1970).CrossRefGoogle Scholar
  31. Shibata, N., Tatsumi, N., Tanaka, K., Okamura, Y., Senda, N.: A contractile protein possessing Ca2+ sensitivity (natural actomyosin) from leucocytes. Its extraction and some of its properties. Biochim. biophys. Acta (Amst.)256, 565–576 (1972).CrossRefGoogle Scholar
  32. Steers, E., Marchesi, V. T.: Studies on a protein component of guinea pig erythrocyte membranes. J. gen. Physiol.54, 65s-71s (1969).Google Scholar
  33. Stewart, C. C., Gasic, G., Hempling, H. G.: Effect of exogenous ATP on the volume of TA3 ascites tumor cells. J. cell. Physiol.73, 125–131 (1969).PubMedCrossRefGoogle Scholar
  34. Szent-Györgyi, A. G.: Meromyosins, the subunits of myosin. Arch. Biochem. Biophys.42, 305–320 (1953).PubMedCrossRefGoogle Scholar
  35. Tilney, L. G., Mooseker, M.: Actin in the brush-border of epithelial cells of the chicken intestine. Proc. nat. Acad. Sci. (Wash.)68, 2611–2615 (1971).CrossRefGoogle Scholar
  36. Wagner, R., Rosenberg, M., Estensen, R.: Endocytosis in Chang liver cells. Quantitation by sucrose-3H uptake and inhibition by cytochalasin B. J. Cell Biol.50, 804–817 (1971).PubMedCrossRefGoogle Scholar
  37. Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., Yamada, K. M.: Microfilaments in cellular and developmental processes. Science171, 135–143 (1971).PubMedCrossRefGoogle Scholar
  38. Wohlfarth-Bottermann, K. E.: Grundelemente der Zellstruktur. Naturwissenschaften50, 237–249 (1963).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Be. I. Kristensen
    • 1
  • L. O. Simonsen
    • 1
  • L. Pape
    • 1
  1. 1.Zoophysiological Laboratory B, August Krogh InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations