Virchows Archiv B

, Volume 22, Issue 1, pp 111–120 | Cite as

Detection of ion shifts in proximal tubule cells of the rat kidney using X-ray microanalysis

  • B. F. Trump
  • I. K. Berezesky
  • S. H. Chang
  • R. E. Bulger


The present study represents an attempt to combine scanning transmission electron microscopy and X-ray microanalysis on thin sections at the intracellular level using kidney tubules in both normal and altered conditions. The results show that semi-quantitative estimates made from X-ray microanalysis can predict the pattern of electrolyte change both in direction and degree; these estimates agree with previously determined chemical analysis of identically treated tissue. Before these promising results can be extended to quantitative intracellular compartment analysis, further work is needed in several areas including preparation of adequate standards, improved ultracryomicrotomy techniques, improvement of contrast of ultrathin frozen sections and standardization in computing background measurements.

Key words

X-ray microanalysis Scanning transmission electron microscopy Intracellular ion shifts Kidney 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agostini, B., Hasselbach, N.: Electron cytochemistry of calcium uptake in the fragmented sarcoplasmic reticulum. Histochemie28, 55–67 (1971)PubMedCrossRefGoogle Scholar
  2. Appleton, T.C.: “Dry” ultrathin frozen sections of unfixed and embedded biological material for X-ray microanalysis of naturally occurring diffusible electrolytes: The cryostat approach. J. Microscopie13, 144–146 (1972)Google Scholar
  3. Appleton, T.C.: X-ray microanalysis of diffusible electrolytes in ultrathin frozen sections. J. Physiol. (Lond.)283, 15–17 (1973)Google Scholar
  4. Appleton, T.C.: A cryostat approach to ultrathin “dry” frozen section for electron microscopy: A morphological and X-ray analytical study. J. Microscopie100, 49–74 (1974)Google Scholar
  5. Brierly, C.P., Slautterbach, D.B.: Studies on ion transport. IV. An electron microscope study of the accumulation of Ca+ + and inorganic phosphate by heart mitochondria. Biochim. biophys. Acta (Amst.)82, 183–186 (1964)Google Scholar
  6. Christensen, A.K.: Frozen thin sections of fresh tissue for electron microscopy with a description of pancreas and liver. J. Cell Biol.51, 722–804 (1971)CrossRefGoogle Scholar
  7. Coleman, J.R., Terepka, A.R.: Electron probe analysis of the calcium distribution in cells of the embryonic chick chorioallantoic membrane. I. A critical evaluation of techniques. J. Histochem. Cytochem.20, 401–413 (1972)PubMedGoogle Scholar
  8. Dorge, A., Gehring, K., Nagel, W., Thurau, K.: Localization of sodium in frog skin by electron microprobe analysis. Naunym-Schmiedeberg’s Arch. Pharmacol.281, 271–280 (1974)CrossRefGoogle Scholar
  9. Dorge, A., Rick, R., Gehring, K., Mason, J., Thurau, K.: Preparation and applicability of freezedried sections in the microprobe analysis of biological soft tissue. J. Microscopie et Biologie Cellulaire22, 205 (1975)Google Scholar
  10. Fuchs, W., Lindemann, B.: Electron beam X-ray microanalysis of frozen biological bulk specimens below 130° K. I. Instrumentation and specimen preparation. J. Microscopie et Biologie Cellulaire22, 227 (1975)Google Scholar
  11. Gehring, K., Dorge, A., Nagel, W., Schacky, B., Hausmann, G., Thurau, K.: Electron probe analysis of electrolytes in freeze-dried cryosections of frog skin. pp. 141–155. St. Louis: EDAX Laboratories 1972Google Scholar
  12. Hall, T.A., Anderson, H.C., Appleton, T.: The use of thin specimens for X-ray microanalysis in biology. J. Micros.99, 177–182 (1973)Google Scholar
  13. Hall, T.A., Gupta, B.L.: Beam-induced loss of organic mass under electron microprobe conditions. J. Micros.100, 177–188 (1974)Google Scholar
  14. Hohling, J.J., Kriz, W., Schnermann, J., von Rosensteil, A.P.: Microprobe measurement of electrolytes in kidney sections: methodology of the microprobe. Verh. Anat. Ges. (Jena)65, 209–215 (1971)Google Scholar
  15. Kriz, W., Hohling, H.J., Schnermann, J., von Rosensteil, A.P.: Microprobe measurement of electrolytes in kidney sections: first results. Verh. Anat. Ges. (Jena)65, 217–225 (1971a)Google Scholar
  16. Kriz, W., Schnermann, J., Hohling, H.J., von Rosensteil, A.P., Hall, T.A.: Electron probe microanalysis of electrolytes in kidney cells. In: Recent advances in renal physiol. Int. Symp on Renal Handling of Sodium, Brestenberg 1971b, pp. 162–171. Basel: Karger 1971bGoogle Scholar
  17. Moreton, R.B., Echlin, P., Gupta, B.L., Hall, T.A., Weis-Fogh, T.: Preparation of frozen hydrated tissue sections for X-ray microanalysis in the scanning electron microscope. Nature (Lond.)247, 113–115 (1974)CrossRefGoogle Scholar
  18. Pentilla, A., Kalimo, H., Trump, B.F.: Influences of glutaraldehyde and/or osmium tetroxide on cell volume, ion content, mechanical stability and membrane permeability of Ehrlich ascites tumor cells. J. Cell Biol.63, 197–214 (1974)CrossRefGoogle Scholar
  19. Robinson, J.R.: Some effects of glucose and calcium upon the metabolism of kidney slices from adult and newborn rats. Biochem. J.45, 68–74 (1949)Google Scholar
  20. Saubermann, A.J., Echlin, P.: The preparation, examination and analysis of frozen hydrated tissue sections by scanning transmission electron microscopy and X-ray microanalysis. J. Micros.105, 155–192 (1975)Google Scholar
  21. Trump, B.F., Strum, J.M., Bulger, R.E.: Studies on the pathogenesis of ischemic cell injury. I. Relation between water and ion shifts and cell ultrastructure in rat kidney slices during swelling at 0–4° C. Virchows Arch. Abt. B16, 1–14 (1974)Google Scholar
  22. Weavers, B.A.: Combined high resolution electron microscopy and electron probe X-ray microanalysis and its application to medicine and biology. Micron.2, 390–404 (1971)Google Scholar
  23. Yarom, R., Peters, P.D., Scripps, M., Rogel, S.: Effect of specimen preparation on intracellular myocardial calcium. Histochemistry38, 143–153 (1974)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • B. F. Trump
    • 1
  • I. K. Berezesky
    • 1
  • S. H. Chang
    • 1
  • R. E. Bulger
    • 1
  1. 1.Department of PathologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations