Advertisement

Virchows Archiv B

, Volume 35, Issue 1, pp 213–228 | Cite as

Experimental intrahepatic cholestasis

A comparative physiopathological, ultrastructural, and cytochemical study of different types
  • H. Loosli
  • D. Gardiol
  • A. Gautier
Article

Summary

Currently little is known about the role of the various constituents of the biliary pole of the hepatocyte in the process of cholestasis. In an attempt to delineate their respective roles we used three approaches-physiopathology, ultrastructure and cytochemistry- to study three types of chemically induced intrahepatic cholestasis: sodium taurolithocholate (NaTL-)cholestasis, phalloidin (P-)cholestasis, and cholestasis caused by the successive action of these two agents (mixed cholestasis).

We compared variations in the biliary flow rate with changes in the plasma levels of certain enzymes, and the ultrastructural alterations revealed by certain cytochemical reactions. According to our experimental findings, NaTL-cholestasis seems to be associated primarily with membrane modification and release of a considerable amount of non-esterified cholesterol; P-cholestasis appears to be associated chiefly with a change in the cytoskeleton of the pericanalicular ectoplasm and moderate release of free cholesterol; whereas mixed cholestasis reveals intermediary characteristics.

Special attention was given to the demonstration, by cytochemical reaction, of free cholesterol under the electron and fluorescence microscope.

Key words

Rat liver Experimental cholestasis Physiopathology Ultrastructure Cytochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostini B, Govindan VM, Hofman W (1975) Phalloidin induced proliferation of actin filaments within rat hepatocytes. Z Naturforsch B30c: 793–795Google Scholar
  2. Bonvicini F, Gautier A, Gardiol D, Borel GA (1978) Cholesterol in acute cholestasis induced by taurolithocholic acid. A cytochemical study in transmission and scanning electron microscopy. Lab Invest 38:487–495PubMedCrossRefGoogle Scholar
  3. Carey JB Jr (1958) The serum trihydroxy-dihydroxy bile acid ratio in liver and biliary tract disease. J Clin Invest 37:1494–1503PubMedCrossRefGoogle Scholar
  4. Clayton RJ, Iber FL, Reubner BH, McKusick VA (1969) Byler’s disease: fatal familial intrahepatic cholestasis in an Amish kindred. Am J Dis Child 117:112–124PubMedGoogle Scholar
  5. Dancker P, Hasselbach W (1975) Interaction of actin with phalloidin: polymerization and stabilisation of F-actin. Biochim Biophys Acta 400:407–414PubMedGoogle Scholar
  6. Dubin M, Maurice M, Feldmann G, Erlinger S (1978) Phalloidin-induced cholestasis in the rat: relation to changes in microfilaments. Gastroenterology 75:450–455PubMedGoogle Scholar
  7. Fakan J, Gautier A (1977) Ruthenium hexammine trichloride (RHT): a new cytochemical reagent for extracellular mucosubstances. Biol Cell (Paris) 29:25aGoogle Scholar
  8. Gabbiani G, Montesano R, Tuchweber B, Salas M, Orci L (1975) Phalloidin-induced hyperplasia of actin filaments in rat hepatocytes. Lab Invest 33:562–568PubMedGoogle Scholar
  9. Geyer G (1977) Cholesterin-Digitonid Reaktion. In: Handbuch der Histochem, 1/3, Elektronenmikroskopische Histochemie. Gustav Fischer, Stuttgart-New York p 261–268Google Scholar
  10. Geyer G, Börner H (1975) dFilipin” - ein histochemisches Fluorochrom für Cholesterin. Acta Histochem. 15suppl: 207–212Google Scholar
  11. Javitt NB (1966) Cholestasis in rats induced by taurolithocholate. Nature 210:1262–1263PubMedCrossRefGoogle Scholar
  12. Kakis G, Yousef IM (1978) Pathogenesis of lithocholate- and taurolithocholate-in-duced intrahepatic cholestasis in rats. Gastroenterology 75:595–607PubMedGoogle Scholar
  13. Kinsky SC, Luse SA, Zopf D, Van Deenen LLM, Haxby J (1967) Interaction of filipin and dérivates with erythrocyte membranes and lipid dispersions: electron microscopic observations. Biochim Biophys Acta 135:844–861PubMedCrossRefGoogle Scholar
  14. Kinsky SC, Haxby J, Kinsky CB, Demel RA, Van Deenen LLM (1968) Effect of cholesterol incorporation on the sensitivity of liposomes to the polyene antibiotic filimarisin. Biochim Biophys Acta 152:174–185PubMedGoogle Scholar
  15. La Fountain JR, Zobel CR, Thomas HR, Galbreath C (1977) Fixation and staining of F-actin and microfilaments using tannic acid. J Ultrastruct Res 58:78–86CrossRefGoogle Scholar
  16. Loosli H, Gardiol D, Gautier A (1981) Normal rat cytochemistry: search for reactions adapted to the study of experimental cholestasis. Bas Appl Histochem (accepted for publication)Google Scholar
  17. Miyai K, Price VM, Fisher MM (1971) Bile acid metabolism in mammals: ultrastructural studies on the intrahepatic cholestasis induced by lithocholic and chenodeoxycholic acids in the rat. Lab Invest 24:292–301PubMedGoogle Scholar
  18. Miyai K, Richardson AL, Mayr W, Javitt NB (1977) Subcellular pathology of rat liver in cholestasis and choleresis induced by bile salts. 1. Effects of lithocholic, 3β-hydroxy-5-cholenoic, cholic and dehydrocholic acids. Lab Invest 36:249–258PubMedGoogle Scholar
  19. Montesano R (1979) Inhomogeneous distribution of filipin-sterol complexes in the ciliary membrane of rat tracheal epithelium. Am J Anat 156:139–145PubMedCrossRefGoogle Scholar
  20. Nemchausky BA, Layden TJ, Boyer JL (1977) Effects of chronic choleretic infusions of bile acids on the membrane of the bile canaliculus: a biochemical and morphological study. Lab Invest 36:259–267PubMedGoogle Scholar
  21. Norman AW, Demel RA, De Kruyff B, Van Deenen LLM (1972) Studies on the biological properties of the polyene antibiotics. Evidence for the direct interaction of filipin with cholesterol. J Biol Chem 147:1918–1929Google Scholar
  22. Okrös I (1968) Digitonin reaction in electron microscopy. Histochemie 13:91–96PubMedCrossRefGoogle Scholar
  23. Plaa GL, Priestly BG (1977) Intrahepatic cholestasis induced by drugs and chemicals. Pharmacol Rev 28:207–273Google Scholar
  24. Robinson JM, Karnovsky MJ (1980) Evaluation of the polyene antibiotic filipin as a cytochemical probe for membrane cholesterol. J Histochem Cytochem 28:161–168PubMedGoogle Scholar
  25. Scallen TJ, Dietert SE (1969) The quantitative retention of cholesterol in mouse liver prepared for electron microscopy by fixation in a digitonin-containing aldehyde solution. J Cell Biol 40:802–813PubMedCrossRefGoogle Scholar
  26. Tillack TW, Kinsky SC (1973) A freeze etch study of effects of filipin on liposomes and human erythrocyte membranes. Biochim Biophys Acta 323:43–54PubMedCrossRefGoogle Scholar
  27. Van Deurs B (1975) The use of tannic acid-glutaraldehyde fixative to visualize gap and tight junctions. J Ultrastruct Res 50:185–192PubMedCrossRefGoogle Scholar
  28. Vermeer BJ, Van Gent CM, De Bruijn WC, Boonders T (1978) The effect of digitonin containing fixatives on the retention of free cholesterol and cholesterol esters. Histochem J 10:287–298PubMedCrossRefGoogle Scholar
  29. Wehland J, Osborn M, Weber K (1977) Phalloidin-induced actin polymerization in cytoplasm of cultured cells interferes with cell locomotion and growth. Proc Natl Acad Sci USA 74:5613–5617PubMedCrossRefGoogle Scholar
  30. Williams CN, Kaye R, Baker L, Hurwitz R, Senior JR (1972) Progressive familial cholestatic cirrhosis and bile acid metabolism. J Pediatr 81:493–500PubMedCrossRefGoogle Scholar
  31. Williamson JR (1969) Ultrastructural localization and distribution of free cholesterol (3β-hydroxysterols) in tissues. J Ultrastruct Res 27:118–133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • H. Loosli
    • 1
  • D. Gardiol
    • 1
  • A. Gautier
    • 2
  1. 1.Institut de PathologieCentre Hospitalier Universitaire VaudoisLausanne 11 CHUVSwitzerland
  2. 2.Centre de Microscopie électroniqueUniversité de LausanneLausanneSwitzerland

Personalised recommendations