Advertisement

Virchows Archiv B

, 23:163 | Cite as

Influence ofl-thyroxine upon enzymatic activity in the renal tubular epithelium of the rat under normal conditions and in mercury-induced lesions

I. Histochemical studies of alkaline phosphatase, acid phosphatase, adenosine-tri-phosphatase and leucine-aminopeptidase
  • H. Schulte-Wissermann
  • E. Straub
  • P. -J. Funke
Article
  • 9 Downloads

Summary

HgCl2-induced renal tubular lesions in the rat present histochemically with a transitory decrease of alkaline phosphatase, acid phosphatase, adenosinetriphosphatase (ATPase), and leucine-aminopeptidase activity. The toxic alterations of enzyme activity were more pronounced in the pars recta of the proximal tubule and in the loop of Henle, as compared with the tubulus contortus I.l-thyroxine treatment leads to an accelerated reversal of that enzymatic defect, following a characteristic pattern, and to a differentiating increase of acid phosphatase and ATPase activity in certain parts of the normal renal tubule. The observations are discussed with reference to the specific mode of action of sublimate and L-thyroxine upon the tubular enzymes and to the well-known metabolic and functional influences of thyroid hormone on the kidney.

Key words

Histochemistry Tubular enzymes AP, SP, ATPase, LAP l-thyroxine-induced effects Sublimate nephrosis 

References

  1. 1.
    Ammon, R., Dirscherl, W.: Fermente, Hormone, Vitamine und die Beziehungen dieser Wirkstoffe zueinander. Bd. II, S. 115. Stuttgart: Thieme 1960Google Scholar
  2. 2.
    Bargoni, N.: Aspects du contrôle des hormones thyroïdiennes sur le métabolisme. Bull. Soc. Chim. biol. (Paris)50, 2427 (1968)Google Scholar
  3. 3.
    Barker, S.B.: In vitro response of kidney tissue metabolism to thyroxine. Endocrinology59, 719 (1956)PubMedGoogle Scholar
  4. 4.
    Berg, H., Levison, S.A.: Alkaline phosphatase activity of the kidney following experimental shock in dogs induced by clostridium perfringens toxin. Arch. Path.53, 179 (1952)Google Scholar
  5. 5.
    Blum, J.J.: Interaction between myosin and its substrates. Arch. Biochem. Biophys.87, 104 (1960)PubMedCrossRefGoogle Scholar
  6. 6.
    Buchanan, J., Tapley, D.F.: Subcellular effects. In: Werner and Ingbar, The thyroid. New York: Harper & Row 1971Google Scholar
  7. 7.
    Butterworth, P.J.: Human kidney and urinary alkaline phosphatases. Biochem. J.107, 467 (1968)PubMedGoogle Scholar
  8. 8.
    Cafruny, E.J., DiStefano, H.S., Farah, A.: Cytophotometric determination of protein-bound sulfhydril groups. J. Histochem. Cytochem.3, 354 (1955)PubMedGoogle Scholar
  9. 9.
    Crane, R.K.: Enzymes and malabsorption: a concept of brush border membrane disease. Gastroenterology50, 254 (1966)Google Scholar
  10. 10.
    Davies, A.G.: Thyroid physiology. Brit. med. J.1972/II, 206Google Scholar
  11. 11.
    Ford, R.V., Owens, J.C., Curd, G.W., Moyer, J.H., Spurr, C.L.: Kidney function in various thyroid states. J. clin. Endocr.21, 548 (1961)PubMedCrossRefGoogle Scholar
  12. 12.
    Fredricsson, B.: A modification of the histochemical method for demonstration of alkaline phosphatase in which the nonspecific reactions and the diffusion phenomena are reduced. Anat. Anz.99, 97 (1952)PubMedGoogle Scholar
  13. 13.
    Fredricsson, B.: The distribution of alkaline phosphatase in the rat lung. Acta anat. (Basel)26, 246 (1956)Google Scholar
  14. 14.
    Gauer, O.H., Henry, J.P., Sieker, H.O.: Cardiac receptors and fluid volume control. Progr. cardiovasc. Dis.4, 1 (1961)CrossRefGoogle Scholar
  15. 15.
    Gilmour, D.: Activity in relation to pH of myosin-5′-nucleotidase. Nature (Lond.)186, 295 (1960)CrossRefGoogle Scholar
  16. 16.
    Goslar, H.G., Herrmann, M.: Zum fermenttopochemischen Verhalten des Nierengewebes nach Verbrühung. Acta histochem. (Jena)31, 70 (1968)Google Scholar
  17. 17.
    Hanson, H., Huetter, H.-J., Mannsfeldt, H.-G., Kretschmer, H.: Zur Darstellung und Substratspezifität einer von der Leucinaminopeptidase unterscheidbaren Aminopeptidase aus Nierenepithelien. Hoppe-Seylers Z. physiol. Chem.348, 680 (1967)PubMedGoogle Scholar
  18. 18.
    Hepler, O.E., Gurley, H., Simonds, J.P.: Experimental nephropathies. II. Renal phosphatase after poisoning with mercury bichloride, uranyl nitrate, and potassium dichromate. Arch. Path.39, 133 (1945)Google Scholar
  19. 19.
    Hopsu, V.K., Santii, R., Glenner, G.G.: Characterization of enzymes hydrolyzing acylnaphthylamides. III. Role of kynurenine formamidase. J. Histochem. Cytochem.14, 653 (1966)PubMedGoogle Scholar
  20. 20.
    Inglis, N.I., Krant, M.J., Fishman, W.H.: Influence of a fat-enriched meal on human serum (L-phenylalanin-sensitive) “intestinal” alkaline phosphatase. Proc. Soc. exp. Biol. (N.Y.)124, 699 (1967)Google Scholar
  21. 21.
    Katz, A.I., Epstein, F.H.: The role of sodium-potassium-activated adenosine triphosphatase in the reabsorption of sodium by the kidney. J. clin. Invest.46, 1999 (1967)PubMedGoogle Scholar
  22. 22.
    Kissane, J.M., Heptinstall, R.H.: Experimental hydronephrosis. Morphologic and enzymatic studies of renal tubules in ureteric obstruction and recovery in the rat. I. Alkaline and acid phosphatases. Lab. Invest.13, 539 (1964)Google Scholar
  23. 23.
    Koishi, T.: Studies on renal tubular transport. II. Effect of certain reagents on accumulation of p-aminohippurate by kidney slices. Jap. J. Pharmacol.8, 124 (1959)PubMedCrossRefGoogle Scholar
  24. 24.
    Maengwyn-Davies, G.D., Friedenwald, J.S., White, R.T.: Histochemical studies of alkaline phosphatases in the tissues of the rat using frozen sections. II. Substrate specifity of enzymes hydrolyzing adenosine-triphosphate, muscle- and yeast-adenylic acids, and creatinephosphate at high pH; the histochemical demonstration of myosin ATP’ase. J. cell. comp. Physiol.39, 395 (1952)CrossRefGoogle Scholar
  25. 25.
    Meier, A.L.: Der Einfluß der Verabreichung von Methylthiouracil und Thyroxin auf die Phosphatasen verschiedener Rattenorgane. Acta anat. (Basel)16, 97 (1952)Google Scholar
  26. 26.
    Nachlas, M.M., Crawford, D.T., Seligman, A.M.: The histochemical demonstration of leucine aminopeptidase. J. Histochem. Cytochem.5, 264 (1957)PubMedGoogle Scholar
  27. 27.
    Pearse, A.G.E.: Histochemistry. Theoretical and applied, Vol. I. London: J. & A. Churchill 1968Google Scholar
  28. 28.
    Rimeck, F., Deimling, O. v.: Hormonabhängige Enzymverteilung in Geweben. XVII. Die Aktivität der Phosphomonoesterasen der Rattenniere unter der Einwirkung von Thyroxin. Histochemie17, 337 (1969)CrossRefGoogle Scholar
  29. 29.
    Robinson, J.R.: The effect of sodium and chloride ions upon swelling of rat kidney slices treated with a mercurial diuretic. J. Physiol. (Lond.)134, 216 (1956)Google Scholar
  30. 30.
    Saunders, S.J., Isselbacher, K.J.: Intestinal absorption of amino acids. Gastroenterology50, 586 (1966)PubMedGoogle Scholar
  31. 31.
    Schmidt, U., Dubach, U.C.: Quantitative Histochemie am Nephron. In: Progress in histochemistry and cytochemistry. Stuttgart: G. Fischer 1971Google Scholar
  32. 32.
    Schmidt, U., Dubach, U.C.: Enzymmuster am Nephron. Quantitative histochemische Ergebnisse. Ergebn. inn. Med. Kinderheilk.32, 83 (1973)Google Scholar
  33. 33.
    Schulte-Wissermann, H., Straub, E.: Intravitale Trypanblau-Speicherung in den Epithelzellen des proximalen Nierentubulus nach Sublimat-Intoxikation und anschließender L-Thyroxin-Behandlung. Virchows Arch. Abt. A Path. Anat.359, 255 (1973)CrossRefGoogle Scholar
  34. 34.
    Schulte-Wissermann, H., Straub, E.: Beeinflussung der quantitativen Relation von proteingebundenen Sulfhydrilzu Bisulfidgruppen durch Thyroxin. Untersuchungen in vivo am normalen und am sublimatgeschädigten Tubulusepithel der Rattenniere. Res. exp. Med.165, 31 (1957)CrossRefGoogle Scholar
  35. 35.
    Schulte-Wissermann, H., Straub, E.: In preparationGoogle Scholar
  36. 36.
    Shore, V., Shore, B., Hsieh, K.: Inhibition of kidney enzymes by HgCl2. Fed. Proc.18, 144 (1959)Google Scholar
  37. 37.
    Skou, J.C.: Studies on the Na+ ion and K+ ion activated ATP hydrolyzing enzyme system. The role of SH groups. Biochem. biophys. Res. Commun.10, 79 (1963)PubMedCrossRefGoogle Scholar
  38. 38.
    Straub, E.: Einfluß von Thyroxin auf den Verlauf des akuten Nierenversagens. I. Einfluß der L-Thyroxin-Applikation auf die Letalität von Kaninchen und Mäusen mit manifestem akutem Nierenversagen (Untersuchungen am Modell der sog. Sublimatnephrose). Res. exp. Med.154, 177 (1971)Google Scholar
  39. 39.
    Straub, E.: Einfluß von Thyroxin auf den Verlauf des akuten Nierenversagens. II. Einfluß der L-Thyroxin-Applikation auf Plasmaspiegel und renale Ausscheidung verschiedener Substanzen bei Kaninchen mit manifestem akutem Nierenversagen (Untersuchungen am Modell der sog. Sublimatnephrose.) Res. exp. Med.155, 32 (1971)Google Scholar
  40. 40.
    Straub, E.: Einfluß von Thyroxin auf den Verlauf des akuten Nierenversagens. III. Einfluß der L-Thyroxin-Applikation auf die Glomerulumfiltration, den effektiven Nierenplasmastrom und die tubuläre Sekretionsund Rückresorptionskapazität von Kaninchen mit toxischem Nierenschaden (Untersuchungen am Modell der sog. Sublimatnephrose). Res. exp. Med.155, 56 (1971)Google Scholar
  41. 41.
    Straub, E.: Thyroxin-Behandlung beim akuten Nierenversagen. Mschr. Kinderheilk.123, 723 (1975)PubMedGoogle Scholar
  42. 42.
    Straub, E.: Effects of L-thyroxine in acute renal failure. Res. exp. Med.168, 81 (1976)CrossRefGoogle Scholar
  43. 43.
    Straub, E., Jost, R.: Thyroxin-Behandlung bei chronischer Niereninsuffizienz. Mschr. Kinderheilk.119, 213 (1971)PubMedGoogle Scholar
  44. 44.
    Strauss, M.D.: Mechanism of thyroid stimulation of metabolism. Ann. Intern. Med.74, 793 (1971)PubMedGoogle Scholar
  45. 45.
    Wachstein, M.: Histochemical staining reactions of the normally functioning and abnormal kidney. J. Histochem. Cytochem.3, 246 (1955)PubMedGoogle Scholar
  46. 46.
    Webb, J.L.: Enzyme and metabolic inhibitors. Vol. II. New York: Academic Press 1966Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. Schulte-Wissermann
    • 1
  • E. Straub
    • 1
  • P. -J. Funke
    • 1
  1. 1.Universitäts-Kinderklinik and Pathologisches Universitäts-InstitutMainzFederal Republic of Germany

Personalised recommendations