Virchows Archiv B

, 27:193 | Cite as

The organization, composition and matrix of hepatocyte nuclei exposed to α-amanitin

  • K. Brasch
  • G. D. Sinclair


Alterations in the structure and molecular composition of avian hepatocyte nuclei were compared following administration in vivo of lethal and sub-lethal doses of α-amanitin. This toxin interferes with extranucleolar transcription by direct inhibition of RNA polymerase II activity. The resultant effects include: extensive condensation of chromatin, displacement of nucleoplasmic contents and fragmentation of nucleoli. Changes in nuclear morphology were quantitated by stereometry and related to variations in RNA and residual, non-histone proteins (NHP). Gross alterations in nuclear structure and depletion of RNA and NHP levels were of similar magnitude with both doses of amanitin. The effects were fully reversible, however, with a minimal dose but terminal with a lethal dose. DNA and histone protein levels remained unchanged at all stages.

These results imply that the process of transcription may itself keep and/or maintain chromatin in a dispersed state, and that in the absence of transcription chromatin naturally condenses. Modification of nuclear proteins may be necessary only to maintain chromatin compacted permanently or for extended periods of time. A model of nuclear organization is proposed to incorporate these considerations and to identify the probable location of the nuclear matrix in situ.

Key words

Nucleus Structure Composition α-amanitin 


  1. Bachellerie, J.-P., Puvion, E., Zalta, J.-P.: Ultrastructural organization and biochemical characterization of chromatin-RNA-protein complexes isolated from mammalian cell nuclei. Eur. J. Biochem.58, 327–337 (1975)PubMedCrossRefGoogle Scholar
  2. Berezney, R., Coffey, D.S.: Nuclear matrix. J. Cell Biol.73, 616–637 (1977)PubMedCrossRefGoogle Scholar
  3. Bouteille, M., Laval, M., Dupuis-Coin, A.M.: Localization of nuclear functions as revealed by ultrastructural autoradiography. In: The Cell Nucleus, vol. 1 (Bush, H., Ed.), pp. 3–71. New York-London: Academic Press 1974Google Scholar
  4. Brasch, K.: Studies on the role of histones HI (f1) and H5 (f2c) in chromatin structure. Exp. Cell Res.101, 396–410 (1976)PubMedCrossRefGoogle Scholar
  5. Brasch, K., Adams, G.H.M., Neelin, J.M.: The morphology of erythroid cells separated by density gradient centrifugation through Ficoll. Cell Tiss. Res.176, 373–387 (1977)CrossRefGoogle Scholar
  6. Brasch, K., Setterfield, G.: Structural organization of chromosomes in interphase nuclei. Exp. Cell Res.83, 175–185 (1974)PubMedCrossRefGoogle Scholar
  7. Comings, D.E., Okada, T.A.: Association of chromatin fibers with the annuli of the nuclear membrane. Exp. Cell Res.62, 293–301 (1970)PubMedCrossRefGoogle Scholar
  8. Comings, D.E., Okada, T.A.: Nuclear proteins III. The fibrillar nature of the nuclear matrix. Exp. Cell Res.103, 341–360 (1976)PubMedCrossRefGoogle Scholar
  9. Derenzini, M., Marinozzi, V., Novello, F.: Effects of α-Amanitine on chromatin in regenerating rat hepatocytes. Virchows Arch. B. Cell Path.20, 307–318 (1976)Google Scholar
  10. Fiume, L.: Pathogenesis of the cellular lesions produced by α-amanitin. In: The pathology of transcription and translation, ed. by E. Färber, pp. 105–122. New York: Marcel Dekker Inc. 1972Google Scholar
  11. Fiume, L., Wieland, Th.: Amanitins. Chemistry and action. FEBS Lett.8, 1–5 (1970)PubMedCrossRefGoogle Scholar
  12. Giles, K.W., Myers, A.: Diphenylamine method for estimation of deoxyribonucleic acid. Nature206, 93–94 (1965)CrossRefGoogle Scholar
  13. Hadjiolov, A.A., Dabeva, M.D., Mackedonski, V.V.: The action of α-amanitin in vivo on the synthesis and maturation of mouse liver ribonucleic acid. Biochem. J.138, 321–334 (1974)PubMedGoogle Scholar
  14. Hodge, L.D., Mancini, P., David, F.M., Heywood, P.: Nuclear matrix of HeLa S3 cells. J. Cell Biol.72, 194–208 (1977)PubMedCrossRefGoogle Scholar
  15. Kedinger, C., Simard, R.: The action of α-amanitin on RNA synthesis in Chinese hamster ovary cells. J. Cell Biol.63, 831–842 (1974)PubMedCrossRefGoogle Scholar
  16. Louis, Ch., Sekeris, C.E.: Isolation of informoferes from rat liver. Exp. Cell Res.102, 317–328 (1976)PubMedCrossRefGoogle Scholar
  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)PubMedGoogle Scholar
  18. Marinozzi, V., Fiume, L.: Effects of α-amanitin on mouse and rat liver cell nuclei. Exp. Cell Res.67, 311–322 (1971)PubMedCrossRefGoogle Scholar
  19. Nagl, W.: Nuclear organization. Ann. Rev. Plant Physiol.27, 39–69 (1976)CrossRefGoogle Scholar
  20. Petrov, P., Sekeris, C.E.: Early action of α-amanitin on extra nucleolar ribonucleoproteins, as revealed by electron microscopic observations. Exp. Cell Res.69, 393–401 (1971)PubMedCrossRefGoogle Scholar
  21. Romen, W., Knobloch, U., Altmann, H.W.: Vergleichende Untersuchungen der Kernveränderungen von Rattenhepatocyten nach Actinomycin D-und α-Amanitin-Vergiftung. Virchows Arch. B Cell Path.23, 93–108 (1977)Google Scholar
  22. Simard, R.: The nucleus: action of chemical and physical agents. Inter. Rev. Cytol.28, 169–211 (1970)CrossRefGoogle Scholar
  23. Simard, R., Langelier, Y., Mandeville, R., Maestracci, N., Royal, A.: Inhibitors as tools in elucidating the structure and function of the nucleus. In: The Cell Nucleus, vol. 3, ed. H. Bush, pp. 447–487. New York: Academic Press 1974Google Scholar
  24. Sinclair, G.D., Brasch, K.: The reversible action of α-amanitin on nuclear structure and molecular composition. Exp. Cell Res. (in press) (1978)Google Scholar
  25. Tata, J.R., Hamilton, M.J., Shields, D.: Effects of α-amanitin in vivo on RNA polymerase and nuclear RNA synthesis. Nature New Biol.238, 161–164 (1972)PubMedCrossRefGoogle Scholar
  26. Weibel, E.R., Kistler, G.S., Scherle, W.F.: Practical stereological methods for morphometric cytology. J. Cell Biol.30, 23–38 (1966)PubMedCrossRefGoogle Scholar
  27. Zuckerkandl, E.: Gene control in eukaryotes and the c-value paradox “excess” DNA as an impediment to transcription of coding sequences. J. Mol. Evol.9, 73–104 (1976)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • K. Brasch
    • 1
  • G. D. Sinclair
    • 1
  1. 1.The Group in Eukaryotic Molecular Biology and Evolution, Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations