Advertisement

Folia Microbiologica

, Volume 10, Issue 2, pp 115–124 | Cite as

Continuous flow method in soil microbiology

IV. Decomposition of Glycine
  • J. Macura
  • F. Kunc
Article

Abstract

The decomposition of glycine in soil was studied by the continuous flow method. Glycine solution was added continuously to soil samples of different weights, i.e. soil columns of different heights. It was found that the extent of glycine mineralization was related to the weight of the soil. Glycine was nitrified most effectively in the soil sample weighing 30 g., in which 65.8% of the added (91.6% of the retained) glycine nitrogen was oxidized to nitrites and nitrates. No steady state was observed in the rate of nitrite and nitrate formation. The rate of nitrification rose at first, in relation to the weight of the soil, but fell after reaching the maximum. The factor limiting the rate of nitrification was the adsorption of ammonium nitrogen in the soil. By using soil samples of different weights and heights it was found possible to localize the process of ammonia release and the oxidation of ammonia and nitrites in the soil column and to influence the ratio of ammonification and nitrification or of the oxidation of ammonium ions and nitrites.

Keywords

Glycine Soil Sample Nitrite Soil Column Ammonium Nitrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Непрерывный проточный метод в микроБиологии почвы

IV. Разложение глицина

Abstract

Методом непрерывного проточного культивирования изучалось разложение глицина в почве. Раствор глицина непрерывно подводили к образцам почвы различного веса, т. е. к столбцам почвы различной высоты. Было установлено, что степень минерализации глицина пропорциональна весу почвы. Нитрификация глицина оказалась наиболее эффективной в образце почвы весом в 30 г, в котором 65,8% прибавленного, т. е. 91.6% адсорбированного азота в глипине окислялись и превращались в нитриты и нитраты. Что касается скорости образования нитритов и нитратов, не наблюдалосьсостояния равновесия. В начале скорость нитрификации повышалась в соответствии с повышением веса почвы, но после достижения максимума она понижалась. Фактором, лимитирующим скорость нитрификации, была адсорбция аммиачного азота в почве. Путем применения образцоб почвы различного веса и различной толщины слоя удалось локализовать процесс освобождения аммиака и окисления аммиака и нитритов в столбце почвы, а также регулировать соотношение между аммонификацией и нитрификацией или между окислением ионов аммония и нитрита.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bremmer, J. M.:Studies on soil organic matter. I. J. Agric. Res. 39: 183, 1949.Google Scholar
  2. Bremner, J. M.:The amino acid composition of protein material in soil. Biochem. J. 47: 538, 1950.PubMedGoogle Scholar
  3. Bremner, J. M.:Studies on soil humic acids. II. J. Agr. Sci. 48: 352, 1957.CrossRefGoogle Scholar
  4. Dadd, C. C., Fowden, L., Pearsall, W. H.:An investigation of the free amino acids in organic soil types using paper partition chromatography. J. Soil Sci. 4: 69, 1953.CrossRefGoogle Scholar
  5. Greenwood, D. J., Lees, H.:Studies on the decomposition of amino acids in soils, I, II, III. Plant & Soil 7: 253, 1956; 12: 69, 175, 1960.CrossRefGoogle Scholar
  6. Ivashkevich, T. M., Kuprevich, V. F., Shcherbakova, T. A.:Changes in the composition of free amino acids in soil during the vegetation period. Doklady AN SSSR 7: 704, 1963. (in Russian). (Ивашкевич, Т. М., Купревич, В. Ф., Шербакова, Т. А.: Доклады AH CCCP 7: 704: 1963.Google Scholar
  7. Kojima, R. T.:Soil organic nitrogen. I, II. Soil Sci. 64: 157, 245, 1947.CrossRefGoogle Scholar
  8. Lees, H., Quastel, J. H.:Biochemistry of nitrification in soil. I. II.. Biochem. J. 40: 803, 815, 1946.PubMedGoogle Scholar
  9. Macura, J.,Continuous flow method in soil microbiology. I. Fol. microbiol. 6: 328, 1961.CrossRefGoogle Scholar
  10. Macura, J., Kunc, F.:Continuous flow method in soil microbiology. II. Fol. microbiol. 6: 398, 1961.CrossRefGoogle Scholar
  11. Macura, J., Kunc, F.:Continuous flow method in soil microbiology. III. Fol. microbiol. 10: 36, 1965.CrossRefGoogle Scholar
  12. Macura, J., Szolnoki, J., Kunc, F., Vančura, V.:Decomposition of glucose continuously added to the soil. Fol. microbiol. 10: 44, 1965.CrossRefGoogle Scholar
  13. Paul, E. A., Schmidt, E. L.:Formation of free amino acids in rhizosphere and nonrhizosphere soil. Soil Sci. Soc. Amer. Proc. 25: 359, 1961.Google Scholar
  14. Pavel, L., Koloušek, J., Šmatlák, V.:Huminové látky. II. Sborník ČSAZV 27A: 207, 1954.Google Scholar
  15. Payne, T. M. B., Rouatt, J. W., Katznelson, H.:Detection of free amino acids in soil. Soil Sci. 82: 521, 1956.CrossRefGoogle Scholar
  16. Putman, H. G., Schmidt, E. L.:Studies on the free amino acid fraction of soils. Soil Sci. 87: 22, 1959.Google Scholar
  17. Quastel, J. H., Scholefield, P. G.:Influence of organic compounds on nitrification in soil. Nature 164: 1068, 1949.CrossRefGoogle Scholar
  18. Quastel, J. H., Scholefield, P. G.:Biochemistry of soil nitrification. Bact. Rev. 15: 1: 1951.PubMedGoogle Scholar
  19. Simonart, P., Mayaudon, J.:Étude de la décomposition de la matière organique dans le sol au moyen de carbon radioactif. II. Plant & Soil 9: 381, 1958.CrossRefGoogle Scholar
  20. Sørensen, H.:Studies on the decomposition of C 14-labelled barley straw in soil. Soil Sci. 95: 45, 1963.CrossRefGoogle Scholar
  21. Sowden, F. J.:Estimation of amino acids in soil hydrolyzates by the Moore and Stein method. Soil Sci. 80: 181, 1955.CrossRefGoogle Scholar
  22. Sowden, F. J.:Distribution of amino acids in selected horizons of soil profiles. Soil Sci. 82: 491, 1956.CrossRefGoogle Scholar
  23. Stevenson, F. J.:Ion exchange chromatography of amino acids in soil hydrolysates. Soil Sci. Soc. Amer. Proc. 18: 373, 1954.Google Scholar
  24. Stojanovic, J., Alexander, M.:Effect of inorganic nitrogen on nitrification. Soil Sci. 86: 208, 1958.CrossRefGoogle Scholar
  25. Tombesi, L.:Paper chromatography and Lees's percolation technique applied to the study of amino acids transformations in soil (In Italian). Ann. Sper. Agrar. Roma 7: 1219, 1953.Google Scholar
  26. Vančura, V.:Root exudates of plants. I. Plant & Soil. 21: 231, 1964.CrossRefGoogle Scholar
  27. Vančura, V., Macura, J., Szolnoki, J.:Products of glucose metabolism in the soil. 8th Intern. Congr. Soil Sci., Bucarest 1964.Google Scholar
  28. Wheeler, B. E. J.:The conversion of amino acids in soils. II. Plant & Soil 19: 219, 1963.CrossRefGoogle Scholar
  29. Wheeler, B. E. J., Yemm, E. W.:The conversion of amino acids in soils. I. Plant & Soil 10: 49, 1958.CrossRefGoogle Scholar

Copyright information

© Nakladatelství Československé akademie věd 1965

Authors and Affiliations

  • J. Macura
    • 1
  • F. Kunc
    • 1
  1. 1.Department of Soil Microbiology, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations