Skip to main content
Log in

Biosynthesis of the phytotoxin tentoxin

I. Synthesis by protoplasts ofAlternaria alternata

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alternaria alternata is well known as a producer of tentoxin as well as some other phytotoxic substances. A new method to prepare protoplasts fromAlternaria alternata, suitable for many purposes, was developed. By use of a mixture of lytic enzymes fromHelix pomatia, andTrichoderma harzianum with the commercial preparation “novozym,” it was possible to prepare protoplasts from all stages of fungal development, including the tentoxin production phase. Optimal incubation conditions led to the conversion of 1 g (wet wt) mycelial cells into 2.3–2.5 × 107 protoplasts within 3–6 h. Submerged as well as surface-grown mycelia were suitable. Optimal stabilization of protoplasts was obtained in 0.8M KCI. The protoplasts were used for both mutagenic treatment and physiological studies. UV irradiation of protoplasts resulted in formation of hyperproducing mutants. Protoplasts were able to form tentoxin. The biosynthetic activity of protoplasts from surface-grown mycelium was 40% that of intact mycelia. Although intact submerged myclia did not synthesize tentoxin, protoplasts of both types of mycelia produced this toxin, indeed protoplasts from submerged mycelia were even more active than those from surface mycelia. Neither oxygen tension nor mechanical stress during the shaking culture is the reason for the lack of tentoxin production by intact submerged mycelial pellets. Since tentoxin-synthesizing enzymes were apparently present in both mycelial types, it is probable that metabolites or lytic products in the pellets inhibit tentoxin-forming enzymes under submerged conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durbin, R. D. and Uchytil, T. F. (1972),Phytopathology 62, 755.

    Google Scholar 

  2. Durbin, R. D. and Uchytil, T. F. (1977),Phytopathology 67, 602,603.

    Article  Google Scholar 

  3. Schadler, D. L., Steele, J. A., and Durbin, R. D. (1976),Mycopathology 58, 101–105.

    Article  CAS  Google Scholar 

  4. Steele, J. A., Uchytil, T. F., Durbin, R. D., Bhatnagar, P., and Rich, D. H. (1976),Proc. Natl. Acad. Sci. USA 73, 2245–2248.

    Article  CAS  Google Scholar 

  5. Wickliff, J. L., Duke, S. O., and Vaughn, K. C. (1982),Physiol. Plant 56, 399–406.

    Article  CAS  Google Scholar 

  6. Dahse, I., Müller, E., Liebermann, B., and Eichhorn, M. (1988),Biochem. Physiol. Pflanzen 183, 59–66.

    CAS  Google Scholar 

  7. Brücker, B., Hänel, I., Hänel, F., and Tröger, R. (1983),Z. Allg. Mikrobiol. 23, 549–556.

    Article  Google Scholar 

  8. Oertel, B. (1983), Untersuchungen zur Physiologie und Kinetik der Tentoxindildung beiAlternaria alternata (Nee ex Fr.),Dissertation, Freidrich-Schiller-Universität Jena.

  9. Edel, B., Brückner, B., and Tröger, R. (1985),J. Basic Microbiol. 25, 155–160.

    Article  CAS  Google Scholar 

  10. Hänel, I., Liebermann, B., Brückner, B., and Tröger, R. (1985),J. Basic Microbiol. 25, 365–371.

    Article  Google Scholar 

  11. Hänel, I. (1985), Untersuchungen zum Phosphat- und Acetateinfluss auf die Bildung des Phytoeffektors Tentoxin durchAlternaria alternata (Fr.) Keissler,Dissertation, Friedrich-Schiller-Universität Jena.

  12. Liebermann, B. (1989), Wirkstoffsynthese durchAlternaria alternata unter besonderer Berücksichtigung cyclischer Peptide,Dissertation, Prom. B, Friedrich-Schiller-Universität Jena.

  13. Bennett, J. W. (1985), Applications in biochemistry and genetics, inFungal Protoplasts, Peberdy, J. F., and Ferenczy, L., eds., Dekker, New York, pp. 189–204.

    Google Scholar 

  14. Brückner, B., May, R., and Loeffler, B. (1990),J. Basic Microbiol. 30, 147–152.

    Article  Google Scholar 

  15. Liebermann, B., Ramm, K., and Baumann, E. (1992), Die analytische Erfassung der cyclischen Tetrapeptide Tentoxin und Dihydrotentoxin und deren Bausteine, inVom Organismus zum Molekül. Physiologische Prozesse, ihre Modellierung und Beeinflussbarkeit auf verschiedenen Ebenen, Dahse, I., ed., Friedrich-Schiller-Universität, Jena/Universitätsverlag Jena, pp. 336–349.

    Google Scholar 

  16. Dales, R. B. G. and Croft, J. H. (1977),FEMS Microbiol. Lett. 1, 201–204.

    Article  Google Scholar 

  17. Kirimura, K., Nakajima, I., Lee, S. P., Kawabe, S., and Usami, S. (1988),Appl. Microbiol. Biotechnol.,27, 504–506.

    CAS  Google Scholar 

  18. Cary, J. W. and Stovall, M. E. (1992),Lett. Appl. Microbiol. 14, 100–103.

    Article  Google Scholar 

  19. Junwai, C., and Shuyun, C. N. (1988),FEMS Microbiol. Lett. 50, 1–4.

    Article  Google Scholar 

  20. Keller, U., Zocher, R., and Kleinkauf, H. (1980),J. Gen. Microbiol. 118, 485–494.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramm, K., Brückner, B. & Liebermann, B. Biosynthesis of the phytotoxin tentoxin. Appl Biochem Biotechnol 49, 35–43 (1994). https://doi.org/10.1007/BF02888845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02888845

Index Entries

Navigation