Problemas finitos de decision con conocimiento cualitativo de la distribucion a priori

  • José A. Cristóbal


Decision problems where the set of states of Nature is finite and which has a partial order relationship, are being studied. The distribution “a priori” over the states is unknown, although one has the information which conserves the previous order. Such a distribution is estimated to be subject to a restriction of monotony, and some properties of the estimator are observed.

In a special way this paper deals with the situation where the states are two-dimensional and present their natural order. Finally an algorithm is given to find the quoted estimator in this last case.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AYER, M., H.D. BRUNK, G.M. EWING, W.T. REID y E. SILVERMAN (1955). “An empirical distribution function for sampling with incomplete information”. Ann. Math. Statist. 26, 641–647.MATHCrossRefMathSciNetGoogle Scholar
  2. BARLOW, R.E., D.J. BARTHOLOMEU, J.M. BREMNER, y H.D. BRUNK (1972). “Statistical inference under order restrictions”. John Wiley & Sons.Google Scholar
  3. BRUNK, H.D. (1955). “Maximum likelihood estimates of monotone parameters”. Ann. Math. Statist. 26, 607–616.MATHCrossRefMathSciNetGoogle Scholar
  4. BRUNK, H.D., G.M. EWING y W.R. UTZ (1957). “Minimizing integrals in certain classes of monotone functions”. Pacif. J. Math. 7, 833–847.MATHMathSciNetGoogle Scholar
  5. DE GROOT, M.H. (1970). “Optimal statistical decisions”. McGraw-Hill.Google Scholar
  6. GEBHARDT, F. (1970). “An algorithm for monotone regression with one or more independent variables”. Biometrika. 57, 263–271.MATHCrossRefGoogle Scholar
  7. MILES, R.E. (1959). “The complete amalgamation into bloks, by weighted means, of a finite set of real numbers”. Biometrika. 46, 317–327.MATHMathSciNetGoogle Scholar
  8. SACKROWITZ, H.B. (1970). “Estimation for ordered parameter sequences: The discrete case”. Ann. Math. Statist. 41, 609–620.MATHCrossRefMathSciNetGoogle Scholar
  9. VAN EEDEN, C. (1956). “Maximum likelihood estimation of ordered probabilities”. Indag. Math. 18, 444–455.Google Scholar
  10. VAN EEDEN, C. (1957). “Maximum likelihood estimation of partially or completely ordered parameters”. Indag. Math. 19, 128–136 y 201–211.Google Scholar
  11. VAN EEDEN, C. (1958). “Testing and estimating ordered parameters of probability distributions”. Studentendrukkerij Poortpers. Amsterdam.Google Scholar

Copyright information

© SEIO 1983

Authors and Affiliations

  • José A. Cristóbal
    • 1
  1. 1.Dto. de EstadísticaUniversidad de SantiagoSantiagoEspaña

Personalised recommendations