Advertisement

Trabajos de Investigacion Operativa

, Volume 6, Issue 1, pp 3–25 | Cite as

El metodo de Karmarkar: Un estudio de sus variantes

  • González Martín C. 
  • Sánchez García M. 
Article
  • 20 Downloads

Resumen

En este trabajo hacemos una revisión de varias versiones del Método de Karmarkar, desarrollando las ideas fundamentales propuestas por diferentes autores en relación con los aspectos más conflictivos y de mayor interés del método original.

Clasificación A.M.S (1985)

90C05 

Palabras clave

Programación Lineal Método de Karmarkar 

The Karmarkar's Method: A study of its variants

Abstract

This paper is a survey of several versions of Karmarkar's Method. We are developping the main ideas, which have been proposed by some authors inr relation with the more interesting and conflicting aspects of the original method.

A.M.S. subject classification (1985)

90C05 

Key words

Linear Programming Karmarkar's Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referencias

  1. [1]
    ANSTREICHER, K. M. (1986): «A monotonic proyective Algorithm for fractional linear programming»,Algorithmica, 1, 483, 489.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    BARNES, E. R. (1986): «A variation on Karmarkar's Algorithm for solving linear programming problem»,Mathematical Programming, 36, 174–182.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    DENNIS, J. E.; MORSHEDI, A. M., y TURNER, K. (1987): «A variable metric variant of the Karmarkar algorithm for linear programming»,Mathematical Programming, 39, 1–20.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    De GHELLINCK, G., y VIAL, J.-Ph (1987): «An extension of Karmarkar's Algorithm for solving a system of linear homogeneous equations on the simplex»,Mathematical Programming, 39, 79–92.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    GAY, D. M. (1987): «A variant of Karmarkar's linear programming algorithm for problems in standar form»,Mathematical Programming, 37, 81–90.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    GILL, P. E.; MURRAY, W.; SAUNDERS, M. A.; TOMLIN, J. A., y WRIGHT, M. H. (1986): «On proyected Newton Barrier methods for linear programming and an equivalence to Karmarkar's proyective method»,Mathematical Programming, 36, 183–189.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    GOLDFARB, D., y MEHROTRA, S. (1988): «Relaxed variants of Karmarkar's Algorithm for linear programs with unknown optimal objective value»,Mathematical Programming, 40, 183–195.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    GOLDFARB, D., y MEHROTRA, S. (1988): «A relaxed version of Karmarkar Method»,Mathematical Programming, 40, 289–315.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    KARMARKAR, N., (1984): «A new polynomial-time algorith forlinear programming»,Combinatorica, 4, 373–395.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    RENEGAR, J. (1988): «A polinomial time algorithm, based on Newton method, for linear programming»,Mathematical Programming, 40, 59–94.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    SHANNO, D. F. (1988): «Computing Karmarkar proyections quickly»,Mathematical Programming, 41, 61–72.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    SHANNO, D. F., y MARSTEN, R. E. (1988): «A reduced-gradient variant of Karmarkar's algorithm and null-space proyections»,Journal of Optimization, Theory and Applications, 57, n.o 3, 383–397.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    TODD, M. J. (1988): «Exploiting special structure in Karmarkar's linear programming algorithm»,Mathematical Programming, 41, 97–114.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    TODD, M. J., y BURREL, B. P. (1986): “An extension of Karmarkar's algorithm for linear programming using dual variables»,Algorithmica, 1, 409–424.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    TOMLIN, J. A. (1987): «An experimental approach to Karmarkar's proyective method for linear programming»,Mathematical Programming Study, 31, 175–191.MATHMathSciNetGoogle Scholar
  16. [16]
    YE, Y., KOJIMA, M. (1987): «Recovering optimal dual solutions in Karmarkar's polinomial algorithm for linear programming»,Mathematical Programming, 39, 305–31.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© SEIO 1991

Authors and Affiliations

  • González Martín C. 
    • 1
  • Sánchez García M. 
    • 1
  1. 1.Dpto. de Estadística e IOUniversidad de La LagunaLa LagunaSpain

Personalised recommendations