Advertisement

Una variante del algoritmo de Edmonds para acoplamientos Maximos

  • José Manuel Gutiérrez Díez
Article
  • 10 Downloads

Resumen

Se da una variante del Algoritmo de Edmonds para Acoplamientos Máximos que permite evitar la contracción de los pseudovértices.

Summary

A modification of Edmonds’ Maximum Matching Algorithm, avoiding the shrinkage of pseudovertices, is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. BALINSKI, M.L. (1965). “Integer programming; Methods, uses, computations”. Man. Sci., 12, p. 253.MathSciNetGoogle Scholar
  2. BERGE, C. (1970). “Graphes et hypergraphes”. Dunod.Google Scholar
  3. BONDY, J.A. & MURTY, U.S.R. (1977). “Graph Theory with Applications”. MacMillan.Google Scholar
  4. CHRISTOFIDES, N. (1975). “Graph Theory. An Algorithmic Approach”. Academic Press.Google Scholar
  5. EDMONDS, J., (1965(a)). “Paths, trees and flowers”. Canadian Math J1, 17, p.449.MATHMathSciNetGoogle Scholar
  6. EDMONDS, J. (1965(b)). “Maximum matchings and a polyhedron with 0–1 vertices”. J1. of Res. Nat. Bur. of Stand., 698, p. 125.Google Scholar
  7. GUTIERREZ, J.M. (81). “Frútex y caminos nodales”. Trab. Est. Inv. Oper., 32–3, p.67.Google Scholar
  8. WITZGALL, C. & ZAHN Jr. C.T. (1965). “Modification of Edmonds’ Maximum Matching Algorithm”. J1. of Res. Nat. Bur. of Stand., 69B, p.91.MathSciNetGoogle Scholar

Copyright information

© Springer 1983

Authors and Affiliations

  • José Manuel Gutiérrez Díez
    • 1
  1. 1.Dep. de Estadística e Investigación Operativa. Facultad de MatemáticasUniversidad de ValenciaValencia

Personalised recommendations