Advertisement

Problema de asignacion cuadratica multiobjetivo

  • Felipe Ortega A. 
Article
  • 28 Downloads

Resumen

Se define la versión multiobjetivo del Problema de Asignación Cuadrática. Se muestran los inconvenientes de la técnica de ponderación de objetivos y se desarrollan algoritmos locales bajo las metodologías de soluciones eficientes, lexicográficas y equilibradas mediante la generalización de los procedimientosr-óptimos al caso multidimensional. Se recogen resultados computacionales sobre los algoritmos propuestos.

Palabras Clave

Programación Multiobjetivo Problema de Asignación Cuadrática Algoritmosr-óptimos 

Clasificación AMS

90C31-90C99 

Summary

We define the Multiobjective Quadratic Assignment Problem. Because of the difficulties of the weighted objectives method we develop local algorithms which are based in the methodologies of efficient, lexicographic and balanced solutions. We generalize ther-optimum procedures to multidimensional problems and we show computacional results of this algorithms.

Key words

Multiobjective Programming Quadratic Assignment Problem r-optimum procedures 

AMS Classification

90C31-90C99 

Referencias

  1. ARMOUR, G. C., y BUFFA, E. S. (1963): ≪A Heuristic Algorithm and Simulation Approach to the Relative Location of Facilities≫,Man. Sci., 9, 294–309.Google Scholar
  2. BRUIJS, P. A. (1984): ≪On the Quality of Heuristic Solutions to a 19 × 19 Quadratic Assignment Problem≫,E. J. O. R., 17, 21–30.MATHCrossRefMathSciNetGoogle Scholar
  3. BURKARD, R. E., y BÖNNIGER, T. (1983): ≪A Heuristic for Quadratic Boolean Programs with Applications to Quadratic Assignment Problems≫,E. J. O. R., 13, 374–386.MATHCrossRefGoogle Scholar
  4. BURKARD R. E., y DERIGS, U. (1980): ≪Assignment and Matching Problems: Solution Methods with FORTRAN Programs≫,Lecture Notes in Economics and Mathematical Systems. 184, Springer, Berlin.MATHGoogle Scholar
  5. BURKARD, R. E., y RENDL, F. (1984): ≪A Thermodynamically Motivated Simulation Procedure for Combinatorial Optimization Problems≫,E. J. O. R., 17, 169–174.MATHCrossRefGoogle Scholar
  6. ELSHAFEI, A. N. (1977): ≪Hospital Layout as a Quadratic Assignment Problem≫,Op. Res. Quart., 28, 167–179.CrossRefGoogle Scholar
  7. FELIPE, A. (1986): ≪Problema de Asignación Cuadrática. Extensiones≫, Tesis Doctoral, Universidad Complutense de Madrid.Google Scholar
  8. GEOFFRION, A. M. (1968): ≪Proper Efficiency and the Theory of Vector Maximization≫,J. Math. Analysis and Applic, 22, 618–630.MATHCrossRefMathSciNetGoogle Scholar
  9. KOOPMANS, T. C., y BECKMANN, M. J. (1957): ≪Assignment Problems and The Location of Economic Activities≫,Econometrica, 25, 53–76.MATHCrossRefMathSciNetGoogle Scholar
  10. NUGENT, C. E.; VOLLMANN, T. E., y RUML J. (1968): ≪An Experimental Comparison of Techniques ofr the Assignment of Facilities to Locations≫,Op. Res., 16, 150–173.Google Scholar
  11. PEGELS, C. (1966): ≪Plant Layout and Discrete Optimizing≫,International J. of Prod. Res., 5, 81–92.CrossRefGoogle Scholar
  12. RENDL, F. (1985): ≪Ranking Scalar Products to Improve Bounds for the Quadratic Assignment Problem≫,E. J. O. R, 20, 363–372.MATHCrossRefMathSciNetGoogle Scholar
  13. SAHNI, S., y GONZALEZ, T. (1976): ≪P-complete Approximation Problem≫, J. A. C. M., 23, 555–565.MATHMathSciNetGoogle Scholar
  14. STEINBERG, L. (1961): ≪The Blackboard Wiring Problem: A Placement Algorithm≫,S I A M Rev., 3, 37–50.MATHMathSciNetGoogle Scholar

Copyright information

© SEIO 1989

Authors and Affiliations

  • Felipe Ortega A. 
    • 1
  1. 1.Dpto. Estadística e I. O. Facultad de Ciencias MatemáticasUniversidad Complutense de MadridMadridSpaña

Personalised recommendations