Folia Microbiologica

, Volume 11, Issue 5, pp 364–372 | Cite as

Dehydrogenase activity and toxinogenesis of a production strain ofCorynebacterium diphtheriae during submerged cultivation

  • Kateřina Nekvasilová
  • J. Fousek


A simple biochemical procedure was obtained for studying metabolism ofCorynebacterium diphtheriae during submerged cultivation based on the modification of the assay of dehydrogenase activity using 2,3,5-triphenyltetrazolium chloride as redox indicator. Results obtained by the estimation of the dehydrogenase activity using TTC are in a good accordance with oxygen consumption assayed manometrically. By following dehydrogenase activity in submerged cultivations of a production strain ofCorynebacterium diphtheriae PW8-Weissensee we found that a massive toxin production is connected with the decrease of the activity of cells. This fall of activity occurs yet during the exponential phase of growth. Especially a sudden fall of succindehydrogenase activity exactly indicates the beginning of a considerable toxin accumulation in the medium. The presence of inhibitory concentrations of iron ions in the medium not only increases the level of dehydrogenase activity but changes its whole kinetics. A retarded and irregular fall of the activity occurs instead of a sharp one typical for good toxin production.


Dehydrogenase Activity Diphtheria Toxin Production Diphtheria Toxin Viable Cell Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barksdale, W. L., Pappenheimer, A. M.:Phage-host relationships in non-toxigenic and toxigenic diphtheria bacilli. J. Bacteriol. 67: 220, 1954.Google Scholar
  2. Edwards, C. D.:The growth and toxin production of Cor. diphtheriae in submerged culture. J. gen. Microbiol. 22: 689, 1960.Google Scholar
  3. Fahmy, A. R., Walsh, E. O.:The quantitative determination of dehydrogenase activity in cell suspension. Biochem. J. 51: 55, 1952.PubMedGoogle Scholar
  4. Hirai, T., Uchida, T., Shinmen, Y., Fukui, Y., Yoneda M.:Toxin production by exponentially multiplying cells of Cor. diphtheriae. Biken J. 8:: 169, 1965.Google Scholar
  5. Kato, I., Homma, R., Yamamato, S., Kurokawa, M.:Synthesis of diphtheria toxin in a cell-free system. Japan. J. Med. Sci. Biol. 16: 55, 1963.Google Scholar
  6. Kun, E., Abood, L. G.:Colorimetric estimation of succindehydrogenase by triphenyltetrazoliumchloride. Science 109: 144, 1949.PubMedCrossRefGoogle Scholar
  7. Linggood, F. V., Matthews, A. C., Pinfield, S., Pope, C. G., Sharland, T. R.:Submerged culture production of diphtheria toxin. Nature 174: 557, 1954.CrossRefGoogle Scholar
  8. Linggood, F. V., Matthews, A. C., Pinfield, S., Pope, C. G., Sharland, T. R.:Production of diphtheria toxin in submerged culture. Nature 176: 1128, 1955.PubMedCrossRefGoogle Scholar
  9. Mitsuhashi, S.:Study on the production of toxin by Cor. diphtheriae. J. exptl. Med. 20: 261, 1949.Google Scholar
  10. Nishida, S.:The relation between the toxin production and growth curve of Cor. diphtheriae I, II, III. Japan. J. Med. Sci. Biol. 7: 453, 1954.Google Scholar
  11. Nishida, S., Ishida, M., Tagami, M.:Enzymic instabilities in the course of shaken culture of C. diphtheriae. Japan. J. Med. Sci. Biol. 10: 221, 1957.Google Scholar
  12. Pádr, Z.:Tetrazolium salts (In Czech). Státní zdrav. nakl., Praha, 1959.Google Scholar
  13. Pappenheimer, A. M., Hendee, E. D.:The iron enzymes of Cor. diphtheriae and their possible relation to diphtheria toxin. J. biol. Chem. 171:: 701, 1947.Google Scholar
  14. Pappenheimer, A. M., Miller, P., Yoneda, M.:Kinetics of diphtheria toxin formation. J. gen. Microbiol. 28: 531, 1962.PubMedGoogle Scholar
  15. Pope, C.G.:The production of toxin by Cor. diphtheriae II. Brit. J. exptl. Pathol. 13: 218, 1932.Google Scholar
  16. Pope, C. G., Linggood, F. V.:Purification of diphtheria toxoid. Brit. J. exptl. Pathol. 20: 297, 1939.Google Scholar
  17. Ramon, G.:Flocculation dans un mélange de toxineanatoxine diphthériques. Compt. rend. Soc. Biol., Paris, 66: 661, 1922.Google Scholar
  18. Raynaud, M., Turpin, A., Mangalo, R., Bizzini, N.:Croissance et toxinogenèse. Ann. Inst. Pasteur 87: 599, 1954.Google Scholar
  19. Raynaud, M., Alouf, R., Mangalo, R.:Croissance et toxinogenèse diphthérique en culture agitée, sur milieu synthétique. Ann. Inst. Pasteur 96: 276, 1959.Google Scholar
  20. Simon, B.:Beiträge zur Prüfung der BCG Impfstoffe. Z. Immunforsch. 113:45, 1956.Google Scholar
  21. Stejskal, A.:Metabolie parameters and cultivation conditions of B. pertusis C.Sc. Thesis, Charles University, Prague 1960.Google Scholar
  22. Vandiviere, H. M., Gentry, W. H., Willis, H. S.:A rapid chemical test of total viability for suspensions of tubercule bacilli. Am. Rev. Tuberc. 66: 95, 1952.Google Scholar
  23. Yamamaka, M., Ohashi, Z., Ozaki, J.:Etude écologique de la production de toxine par Cor. diphtheriae. Rev. Immunol. Paris, 20: 26, 1956.Google Scholar
  24. Yoneda, M., Pappenheimer, A. M.:Some effects of iron deficiency on the extracellular products released by toxigenic and nontoxigenic strain of Cor. diphtheriae. J. Bacteriol. 74: 256, 1957.PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1966

Authors and Affiliations

  • Kateřina Nekvasilová
    • 1
  • J. Fousek
    • 1
  1. 1.Institute of Sera and VaccinesPrague 10

Personalised recommendations