Chinese Science Bulletin

, Volume 45, Issue 12, pp 1101–1108 | Cite as

DNA-protein interaction at erythroid important regulatory elements of MEL cells byin vivo footprinting

  • Xinjun Ji
  • Depei Liu
  • Dongdong Xu
  • Lei Li
  • Jing Wang
  • Zhiquan Liang


Using ligation-mediated PCR method to study the status of DNA-protein interaction at hypersensitive site 2 of locus control Region and βmaj promoter of MEL cell line before and after induction, MEL cell has been cultured and induced to differentiation by Hemin and DMSO, then the live cells have been treated with dimethyl sulfate. Ligation mediated PCR has been carried out following the chemical cleavage. The results demonstrate that before and after induction, the status of DNA-protein interaction at both hypersensitive site 2 and βmaj promoter change significantly, indicating that distal regulatory elements (locus control region, hypersensitive sites) as well as proximal regulatory elements (promoter, enhancer) of β-globin gene cluster participate in the regulation of developmental specificity.


β-globin gene HS LM-PCR in vivo footprinting MEL cell line 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grosveld, F., van Assendelfl, G. B., Greaves, D. R. et al., Position-independent, high-level expression of the human β-globin gene in transgenic mice, Cell, 1987, 51: 975.PubMedCrossRefGoogle Scholar
  2. 2.
    Fraser, P., Pruzina, S., Antoniou, M. et al., Each hypersensitive site of the humanβ-globin locus control region confers a different developmental pattern of expression on the globins, Genes & Dev., 1993, 7: 106.CrossRefGoogle Scholar
  3. 3.
    Frederick, M. A., Short Protocol in Molecular Biology, Chapter15.5, New York: John Wiley & Sons, Inc., 1995.Google Scholar
  4. 4.
    Garrity, D. A., Wold, B. J., Effects of different DNA polymerases in ligation-mediated PCR: Enhanced genomic sequencing andin viva footprinting, Proc. Natl. Acad. Sci. USA, 1992, 89: 1021.PubMedCrossRefGoogle Scholar
  5. 5.
    Reddy, P. M. S., Shen, C. K. J., Erythroid differentiation of mouse erythroleukemia cells results in reorganization of protein-DNA complexes in the mouse βmaj globin gene promoter but not its distal enhancer, Mol. Cell. Biol., 1993, 13: 1093.PubMedGoogle Scholar
  6. 6.
    Asano, H., Stamatoyannopoulos, G., Activation ofβ-glabin promoter by erythroid kruppel-like factor, Mol. Cell. Biol., 1998, 18: 102.PubMedGoogle Scholar
  7. 7.
    Kadonaga, J. T., Carner, K. R., Masiara, F. R. et al., Isolation of cDNA encoding transcription factor Spl and functional analysis of the DNA binding domain, Cell, 1987, 51: 1079.PubMedCrossRefGoogle Scholar
  8. 8.
    Andrews, N. C., Erdjument-Bromage, H., Davidson, M. B. et al., Erythroid transcription factor NFE2 is a haemetopoieticspecific basic-leucine zipper protein, Nature, 1993, 362: 722.PubMedCrossRefGoogle Scholar
  9. 9.
    Trainor, C. D., Omichinski, J. G., Vandergon, T. L. et al., A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA binding domain for high-affinity interaction, Mol. Cell. Biol., 1996, 16: 2238.PubMedGoogle Scholar
  10. 10.
    Ronchi, A. E., Bottardi, S., Mazzucchelli, C. et al., Differential binding of the NFE3 and CP1/NFY transcription factors to the human gamma- and epsilon-globin CCAAT boxes, J. Biol. Chem., 1995, 270: 21934.PubMedCrossRefGoogle Scholar
  11. 11.
    Evans, T., Felsenfeld, G., Reitman, M., Control of globin gene transcription, Annu. Rev. Cell. Biol., 1990, 6: 95.PubMedCrossRefGoogle Scholar
  12. 12.
    Wijgerde, M., Grosveld, F., Fraser, P., Transcription complex stability and chromatin dynamicsin vivo, Nature, 1995, 377: 209.PubMedCrossRefGoogle Scholar
  13. 13.
    Baron, M. H., Transcriptional control of globin gene switching during vertebrate development, BBA, 1997, 1351: 51.PubMedGoogle Scholar
  14. 14.
    Wood, W. G., The complexities of beta globin gene regulation, Trends Genet, 1996, 12: 204.PubMedCrossRefGoogle Scholar
  15. 15.
    Navas, P. A., Peterson, K. R., Li, Q. et al., Developmental specificity of the interaction between the locus control region and embryonic or fetal globin genes in transgenic mice with an HS3 core deletion, Mol. Cell Biol., 1998, 18: 4188.PubMedGoogle Scholar
  16. 16.
    Ikuta, T., Kan, Y. W.,In vivo protein-DNA interactions at the beta-globin gene locus, Proc. Natl. Acad. Sci. USA, 1991,88: 10188.PubMedCrossRefGoogle Scholar
  17. 17.
    Strauss, E. C., Orkin, S. H.,In vivo protein-DNA interactions at hypersensitive site 3 of the human beta-globin locus control region. Proc. Natl. Acad. Sci. USA, 1992, 89: 5809.PubMedCrossRefGoogle Scholar
  18. 18.
    Ikuta, T., Papayannopoulou, T., Stamatoyannopoulos, G. et al., Globin gene switching,in vivo protein-DNA interactions of the human beta-globin locus in erythroid cells expressing the fetal or the adult globin gene program, J. Biol. Chem., 1996, 271: 14082.PubMedCrossRefGoogle Scholar
  19. 19.
    Reddy, P. M. S., Stamatoyannopoulos, G., Papayannopoulou, T. et al., Genomic footprinting and sequencing of human beta-globin locus, Tissue specificity and cell line artifact, J. Biol. Chem., 1994, 269: 8287.PubMedGoogle Scholar
  20. 20.
    Reddy, P. M. S., Shen, C. K. J., Protein-DNA interactionsin vivo of an erythroid-specific, human beta-globin locus enhancer, Proc. Natl. Acad. Sci. USA, 1991, 88: 8676.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Xinjun Ji
    • 1
  • Depei Liu
    • 1
  • Dongdong Xu
    • 1
  • Lei Li
    • 1
  • Jing Wang
    • 1
  • Zhiquan Liang
    • 1
  1. 1.National Laboratory of Medical Molecular Biology, Institute of Basic Medical SciencesChinese Academy of Medical Sciences, Faculty of Basic Medical Sciences, Peking Union Medical CollegeBeijingChina

Personalised recommendations