Chinese Science Bulletin

, Volume 45, Issue 24, pp 2227–2231 | Cite as

A simulation method of combinding boundary element method with generalized Langevin dynamics



A new simulation approach to incorporate hydration force into generalized Langevin dynamics (GLD) is developed in this note. The hydration force determined by the boundary element method (BEM) is taken into account as the mean force terms of solvent including Coulombic interactions with the induced surface charge and the surface pressure of solvent. The exponential model is taken for the friction kernel. A simulation study has been performed on the cyclic undecapeptide cyclosporin A (CPA). The results obtained from the new method (GLDBEM) have been analyzed and compared with that obtained from the molecular dynamics (MD) simulation and the conventional stochastic dynamics (SD) simulation. We have found that the results obtained from GLDBEM show the obvious improvement over the SD simulation technique in the study of molecular structure and dynamic properties.


potential of mean force of solvent boundary element method friction memory function generalized Langevin dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rossky, P. J., Simon, J. D., Dynamics of chemical processes in polar solvents, Nature, 1994, 370: 263.PubMedCrossRefGoogle Scholar
  2. 2.
    Karplus, M., Petsko, G. A., Molecular dynamics simulations in biology, Nature, 1990, 347: 631.PubMedCrossRefGoogle Scholar
  3. 3.
    van Gunsteren. W. F., Weiner, P. K., Wilkinson, A., J. Computer Simulation of Biomolecular System: Theoretical and Experimental Application. Vol. 2. The Netherlands: Leidon ESCOM, 1993.Google Scholar
  4. 4.
    Wan, S. Z., Wang, C. X., Shi Y. Y., Grneralized Langevin dynamics simulation: Numerical integration and application of generalized Langevin equation with an exponential model for the friction kernel, Mol. Phys, 1998, 93: 901.CrossRefGoogle Scholar
  5. 5.
    Shi, Y. Y., Wang, L., van Gunsteren, W. F., On the approximation of solvent effects on conformation and dynamics of cyclosporin A by stochastic dynamics simulation techniques, Mol. Simul., 1988, 1: 369.CrossRefGoogle Scholar
  6. 6.
    Zauhar, R. J., The incorporation of hydration forces determined by continuum electrostatics into molecular mechanics simulations, J. Comput. Chem., 1991, 12: 575.CrossRefGoogle Scholar
  7. 7.
    Gilson, M. K., Davis, M. E., Luty B. A. et at., Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, J. Phys. Chem., 1993, 97: 3591.CrossRefGoogle Scholar
  8. 8.
    Sharp, K., Incorporating solvent and ion screening into molecular dynamics using the finite-difference Poisson-Boltzmann method, J. Comput. Chem. 1991, 12: 454.CrossRefGoogle Scholar
  9. 9.
    Gilson, M. K., McCammon, J. A., Madura, J. D., Molecular dynamics simulation with continuum electrostatic model of the solvent, J. Comput. Chem., 1995, 16: 1081.CrossRefGoogle Scholar
  10. 10.
    Wang, C. X., Wan, S. Z., Xiang Z. X. et al., Incorporating hydration force determined by boundary element method into stochastic dynamics, J. Phys. Chem., 1997, 102: 230.Google Scholar
  11. 11.
    van Gunsteren, W. F., Berendsen H. J. C., A leap-frog algorithm for stochastic dynamics, Mol. Simulation, 1988, 1: 173.CrossRefGoogle Scholar
  12. 12.
    Yoon, B. J., Lenhoff, A. M., A boundary element method for molecular electrostatics with electrolyte effects. J. Comput. Chem., 1990. 1: 1080.CrossRefGoogle Scholar
  13. 13.
    Zauhar, R. J., Morgan, R. S., A new method for computing the macromolecular electric potential, J. Mol. Biol., 1985, 186: 815PubMedCrossRefGoogle Scholar
  14. 14.
    Xiang, Z. X., Huang, F. H., Shi, Y. Y., Calculation of solvation energy with a combination of the boundary element method and PDLD model. J. Phys. Chem., 1994, 98: 12782.CrossRefGoogle Scholar
  15. 15.
    van Gunsteren. W. F., Berendsen, H. J. C., Groningen Molecular Simulation (GROMOS) Library Manual, Groningen: Biomos, 1987.Google Scholar
  16. 16.
    Juffer, A. H., Botta, E. F. F., van Keulen B. A. M. et al., The electric potential of a macromolecule in a solvent: A fundamenlial approach, J. Comput. Phys., 1991, 97: 144.CrossRefGoogle Scholar
  17. 17.
    Loosli, H. R., Kessler H., Oschkinat, H. et al., Peptide conformations, Part 31, The conformation of cyclosporin A in the crystal and in solution. Helv. Chim. Acta. 1985, 68: 682.CrossRefGoogle Scholar
  18. 18.
    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. et al., Molecular dynamics with coupling to an external bath, J. Chem. Phys., 1984, 81: 3684.CrossRefGoogle Scholar
  19. 19.
    Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C., Numericdi integration of the Cartesian equations of motion of a system with constrains: Molecular dynamics ofn-alkanes, J. Comput. Phys., 1977, 23: 327.CrossRefGoogle Scholar
  20. 20.
    Fraternali, F., van Gunsteren, W. F., An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution. J. Mol. Biol., 1996, 256: 939.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  1. 1.Center for Biomedical EngineeringBeijing Polytechnic UniversityBeijingChina
  2. 2.School of Life ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations