Advertisement

Chinese Science Bulletin

, Volume 44, Issue 19, pp 1770–1773 | Cite as

Improved computation of pressure coefficient and temperature coefficient of ultrasonic velocity in organic liquids

  • Yigang Lu
  • Jianxin Peng
  • Jie Tong
  • Yanwu Dong
Notes

Abstract

Based on Jacobson’s molecular free length theory in liquids and the relationship between the ultrasonic velocity and the molecular free length in organic liquids, the equations of pressure coefficient and temperature coefficient of ultrasonic velocity in organic liquids are derived. The calculated pressure coefficient and temperature coefficient of ultrasonic velocity are in good agreement with the measured results.

Keywords

organic liquid ultrasonic velocity pressure coefficient of ultrasonic velocity temperature coefficient of ultrasonic velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kittle, C., Ultrasonic propagation in liquid II. Theoretical study of the free volume model of the liquid state,J. Chem. Phys., 1946, 61(14): 614.CrossRefGoogle Scholar
  2. 2.
    Hartmann, B., Potential energy effects on the sound speed in liquids,J. Acoust. Soc. Am., 1979, 65(6): 1392.CrossRefGoogle Scholar
  3. 3.
    Billgoman, L.,Ultrasonic (in Chinese), Beijing: The National Defence Industry Publishing House, 1964.Google Scholar
  4. 4.
    Tong Jie, Dong Yanwu, Expressions of acoustic parameters in organic liquids derived from Schaaff’ s theory, J. Acoust. Soc. Am., 1993(93): 291.Google Scholar
  5. 5.
    Jacobson, B., Intermolecular free lengths in liquid state I. Adiabatic and isothermal compressibilities,Acta Chem. Scand., 1952(6): 1485.Google Scholar
  6. 6.
    Jacobson, B., Ultrasonic velocity in liquids and liquid mixtures,J. Chem. Phy., 1952(20): 927.Google Scholar
  7. 7.
    Soczkiewiez, E., The dependence on pressure of the velocity of ultrasonic waves in liquids and the available volume of mixtures,Arch. Aco., 1977(4): 325.Google Scholar
  8. 8.
    Soczkiewiez, E., Temperature and pressure chances of “collision factor” in Schaaffs’ molecular-kinetic theory of wave propagation in liquids,Arch. Aco., 1978(4): 267.Google Scholar
  9. 9.
    Coppens, A.B., Parameter of nonlinearity in fluids,J. Acoust. Soc. Am., 1965(38): 797.Google Scholar
  10. 10.
    Kavlgud, M.V., Ultrasonic velocity in liquid binary mixtures,Acustica, 1960(10): 316.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Yigang Lu
    • 1
  • Jianxin Peng
    • 1
  • Jie Tong
    • 2
  • Yanwu Dong
    • 2
  1. 1.Department of PhysicsSouth China University of TechnologyGuangzhouChina
  2. 2.Applied Acoustics InstituteShaanxi Normal UniversityXi’anChina

Personalised recommendations