Advertisement

Chinese Science Bulletin

, Volume 45, Issue 7, pp 643–649 | Cite as

Trace element characteristics and origin of intergranular components in mantle peridotites

  • Yigang Xu
Notes

Abstract

Leaching experiment has been carried out on mantle xenoliths with different petrographic features in order to directly characterize the nature of intergranular components. ICP-MS analyses of leachates show that they are characterized by high LREE concentrations with strong depletion of Ta. The total REE contents and whether the negative Rb, Ba and Nb anomalies are present or not in intergranular components are largely dependent upon the nature of mantle metasomatism experienced by its host rock. It is proposed that intergranular components may represent residues of small volume metasomatic melts.

Keywords

peridotite xenoliths intergranular components trace elements upper mantle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zindler, A., Jagoutz, E., Mantle cryptology, Geochim. Cosmochim. Acta, 1988, 52: 319.CrossRefGoogle Scholar
  2. 2.
    Bodinier, J. L., Merlet, C., Bedini, R. M. et al., The distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox, Geochim. Cosmochim. Acta, 1996, 60: 545.CrossRefGoogle Scholar
  3. 3.
    Xu, Y.G., Distribution of trace elements in spinel and garnet peridotites, Science in China, Sci. D, to appear.Google Scholar
  4. 4.
    Xu, Y. G., Mercier, J. C., Lin, C. Y., Amphibole-bearing peridotite xenoliths from Nushan, Anhui Province: Evidence for melt percolation process in the upper mantle and lithospheric uplift, Chinese J. Geochem., 1997, 16: 213.CrossRefGoogle Scholar
  5. 5.
    Ionov, D. A., Savoyant, L., Dupuy, C., Application of the ICP-MS technique to trace element analysis of peridotites and their minerals, Geostandard Newsletters, 1992, 16: 311.CrossRefGoogle Scholar
  6. 6.
    Sun, S. S., McDonough, W. F., Chemical and isotopic systematic of oceanic basalt: Implication for mantle composition and process, Magmatism in the Ocean Basin, Oxford: Geol. Soc. Spec. Publ., Blackwell Sci. Publ., 1989, 313–346.Google Scholar
  7. 7.
    Liu, C. Q., Masuda, A., Xie, G. H., Majorand trace-element compositions of Cenozoic basalts in eastern China: petrogenesis and mantle source, Chem. Geol., 1994, 114: 19.CrossRefGoogle Scholar
  8. 8.
    Humphris, S. E., The mobility of the rare earth elements in the crust, Rare Earth Element Geochemistry, Amsterdam: Elsevier, 1984, 317–342.Google Scholar
  9. 9.
    Fleet, A. J., Aqueous and sedimentary geochemistry of the rare earth elements, Rare Earth Element Geochemistry, Amsterdam: Elsevier, 1984, 343–374.Google Scholar
  10. 10.
    Neal, C. R., Taylor, L. A., A negative Ce anomaly in a peridotite xenolith: evidence for crustal recycling into the mantle or mantle metasomatism? Geochim, Cosmochim. Acta, 1989, 53: 1035.CrossRefGoogle Scholar
  11. 11.
    Bedini, R. M., Bodinier, J. L., Dautria, J. M. et al., Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift, Earth Planet. Sci. Lett., 1997, 153: 67.CrossRefGoogle Scholar
  12. 12.
    Ionov, D. A., Dupuy, C., O’Reilly, S. Y. et al., Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet. Sci. Lett., 1993, 119: 283.CrossRefGoogle Scholar
  13. 13.
    McKenzie, D. P., Some remarks on the movement of small melt fractions in the mantle, Earth Planet. Sci. Lett., 1989, 95: 53.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Yigang Xu
    • 1
  1. 1.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations