Skip to main content
Log in

Optimal heat kernel estimates for schrödinger operators with magnetic fields in two dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Sharp smoothing estimates are proven for magnetic Schrödinger semigroups in two dimensions under the assumption that the magnetic field is bounded below by some positive constantB 0. As a consequence theL∞ norm of the associated integral kernel is bounded by theL∞ norm of the Mehler kernel of the Schrödinger semigroup with the constant magnetic fieldB 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J.E., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields, I. General interactions. Duke Math. J.45, 847–883 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beckner, W.: Inequalities in Fourier Analysis. Ann. of Math.102, 159–182 (1975)

    Article  MathSciNet  Google Scholar 

  3. Brascamp, H. J., Lieb, E.H.: Best constants in Young’s inequality, its converse and its generalization to more than three functions. Adv. in Math.20, 151–172 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators (with application to Quantum Mechanics and Global Geometry), Berlin-Heidelberg-New York: Springer, 1987

    MATH  Google Scholar 

  5. Carlen, E., Loss, M.: Optimal smoothing and decay estimates for viscously damped conservation laws, with application to the 2-D Navier Stokes equation. Duke Math. J.81, 135–157 (1996)

    Article  MathSciNet  Google Scholar 

  6. Davies, E.B.: Heat kernels and spectral theory. Cambridge tracts in Mathematics, Vol.92, Cambridge: Cambodge University Press, 1989

    Google Scholar 

  7. Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dinchlet Laplacians. J. Funct. Anal.59, 335–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdös, L.: Estimates on stochastic oscillatory integrals and on the heat kernel of the magnetic Schrödinger operator. Duke Math. J.76, 541–566 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Federbush, P.: A partially alternate derivation of a result of Nelson. J. Math. Phys.10, 50–52 (1969)

    Article  ADS  MATH  Google Scholar 

  10. Gross, L.: Logarithmic Sobolev inequalities. Amer.J. Math.97, 1061–1083 (1976)

    Article  MATH  Google Scholar 

  11. Hess, H., Schrader, R., Uhlenbrock, D.A.: Domination of semigroups and generalizations of Kato’s inequality. Duke Math. J.44, 893–904 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kato, T.: Schrödinger operators with singular potentials. Isr. J. Math.13, 135–148 (1972)

    Article  Google Scholar 

  13. Lieb, E.: Gaussian kernels have Gaussian maximizers. Invent. Math.102, 179–208 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Leinfelder, H. and Simader, C.: Schrödinger operators with singular magnetic vector potentials. Math. Z.176, 1–19 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Malliavin, P.: Minoration de l’etat fondamental de l’equation de Schrödinger du magnetisme et calcul des variations stochastiques. C.R.Acad.Sci.Paris Ser.I.Math.302 481–486 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Nelson, E.: A quartic interaction in two dimensions. In Mathematical Theory of Elementary Particles, R. Goodman and I. Segal, eds., Cambridge, MA: M.I.T. Press, 1966

    Google Scholar 

  17. Simon, B.: An abstract Kato inequality for generators of positivity preserving semigroups. Ind. Math. J.26, 1067–1073 (1977). Kato’s inequality and the comparison of semigroups. J. Funct. Anal.32, 97–101 (1979)

    Article  MATH  Google Scholar 

  18. Simon, B.: Functional integration and Quantum Physics. New York: Academic Press, 1979

    MATH  Google Scholar 

  19. Simon, B.: Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.)7, 447–526 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ueki, N.: Lower bounds on the spectra of Schrödinger operators with magnetic fields. J. Funct. Anal.120, 344–379 (1994) and127, 257–258 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Weissler, F.: Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. A.M.S.237, 255–269 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

© {dy1996} by the authors Reproduction of this article, in its entirety, by any means is permitted for noncommercial purposes

Work supported by N S F grant DMS-95-00840 and the Erwin Schrödinger Institute

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loss, M., Thaller, B. Optimal heat kernel estimates for schrödinger operators with magnetic fields in two dimensions. Commun. Math. Phys. 186, 95–107 (1997). https://doi.org/10.1007/BF02885674

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02885674

Keywords

Navigation