Communications in Mathematical Physics

, Volume 186, Issue 1, pp 95–107 | Cite as

Optimal heat kernel estimates for schrödinger operators with magnetic fields in two dimensions

  • Michael Loss
  • Bernd Thaller


Sharp smoothing estimates are proven for magnetic Schrödinger semigroups in two dimensions under the assumption that the magnetic field is bounded below by some positive constantB 0. As a consequence theL∞ norm of the associated integral kernel is bounded by theL∞ norm of the Mehler kernel of the Schrödinger semigroup with the constant magnetic fieldB 0.


Gaussian Function Heat Kernel Constant Magnetic Field Logarithmic Sobolev Inequality Heat Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AHS77]
    Avron, J.E., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields, I. General interactions. Duke Math. J.45, 847–883 (1978)CrossRefMathSciNetMATHGoogle Scholar
  2. [B75]
    Beckner, W.: Inequalities in Fourier Analysis. Ann. of Math.102, 159–182 (1975)CrossRefMathSciNetGoogle Scholar
  3. [BL76]
    Brascamp, H. J., Lieb, E.H.: Best constants in Young’s inequality, its converse and its generalization to more than three functions. Adv. in Math.20, 151–172 (1976)CrossRefMathSciNetMATHGoogle Scholar
  4. [CFKS87]
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators (with application to Quantum Mechanics and Global Geometry), Berlin-Heidelberg-New York: Springer, 1987MATHGoogle Scholar
  5. [CL96]
    Carlen, E., Loss, M.: Optimal smoothing and decay estimates for viscously damped conservation laws, with application to the 2-D Navier Stokes equation. Duke Math. J.81, 135–157 (1996)CrossRefMathSciNetGoogle Scholar
  6. [D89]
    Davies, E.B.: Heat kernels and spectral theory. Cambridge tracts in Mathematics, Vol.92, Cambridge: Cambodge University Press, 1989Google Scholar
  7. [DS84]
    Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dinchlet Laplacians. J. Funct. Anal.59, 335–395 (1984)CrossRefMathSciNetMATHGoogle Scholar
  8. [E94]
    Erdös, L.: Estimates on stochastic oscillatory integrals and on the heat kernel of the magnetic Schrödinger operator. Duke Math. J.76, 541–566 (1994)CrossRefMathSciNetMATHGoogle Scholar
  9. [F69]
    Federbush, P.: A partially alternate derivation of a result of Nelson. J. Math. Phys.10, 50–52 (1969)CrossRefADSMATHGoogle Scholar
  10. [G76]
    Gross, L.: Logarithmic Sobolev inequalities. Amer.J. Math.97, 1061–1083 (1976)CrossRefMATHGoogle Scholar
  11. [HSU77]
    Hess, H., Schrader, R., Uhlenbrock, D.A.: Domination of semigroups and generalizations of Kato’s inequality. Duke Math. J.44, 893–904 (1977)CrossRefMathSciNetMATHGoogle Scholar
  12. [K72]
    Kato, T.: Schrödinger operators with singular potentials. Isr. J. Math.13, 135–148 (1972)CrossRefGoogle Scholar
  13. [L90]
    Lieb, E.: Gaussian kernels have Gaussian maximizers. Invent. Math.102, 179–208 (1990)CrossRefADSMathSciNetMATHGoogle Scholar
  14. [LS81]
    Leinfelder, H. and Simader, C.: Schrödinger operators with singular magnetic vector potentials. Math. Z.176, 1–19 (1981)CrossRefMathSciNetMATHGoogle Scholar
  15. [M86]
    Malliavin, P.: Minoration de l’etat fondamental de l’equation de Schrödinger du magnetisme et calcul des variations stochastiques. C.R.Acad.Sci.Paris Ser.I.Math.302 481–486 (1986)MathSciNetMATHGoogle Scholar
  16. [N66]
    Nelson, E.: A quartic interaction in two dimensions. In Mathematical Theory of Elementary Particles, R. Goodman and I. Segal, eds., Cambridge, MA: M.I.T. Press, 1966Google Scholar
  17. [S77,79]
    Simon, B.: An abstract Kato inequality for generators of positivity preserving semigroups. Ind. Math. J.26, 1067–1073 (1977). Kato’s inequality and the comparison of semigroups. J. Funct. Anal.32, 97–101 (1979)CrossRefMATHGoogle Scholar
  18. [S79]
    Simon, B.: Functional integration and Quantum Physics. New York: Academic Press, 1979MATHGoogle Scholar
  19. [S82]
    Simon, B.: Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.)7, 447–526 (1982)CrossRefMathSciNetMATHGoogle Scholar
  20. [U94]
    Ueki, N.: Lower bounds on the spectra of Schrödinger operators with magnetic fields. J. Funct. Anal.120, 344–379 (1994) and127, 257–258 (1995)CrossRefMathSciNetMATHGoogle Scholar
  21. [W78]
    Weissler, F.: Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. A.M.S.237, 255–269 (1978)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Michael Loss
    • 1
  • Bernd Thaller
    • 2
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institut fur MathematikUniversitat GrazGrazAustria

Personalised recommendations