Advertisement

Folia Microbiologica

, Volume 23, Issue 6, pp 438–443 | Cite as

Eurotium (Aspergillus) repens metabolites and their biological activity

  • M. Podojil
  • P. Sedmera
  • J. Vokoun
  • V. Betina
  • H. Baráthová
  • Z. Ďuračková
  • K. Horáková
  • P. Nemec
Article

Abstract

Eurotium repens mycelium cultivated under static conditions was used to isolate and identify metabolities—echinulin, physcion, erythroglaucin, flavoglaucin and asperentin; the filtrate of the culture yielded asperentin 8-methylether. The broadest biological activity spectrum was displayed by asperentin which had antibacterial and antifungal effects and, at a concentration of 86 ώg/ml, caused 50 % mor7 tality inArtemia saline larvae. The highest cytotoxicity towards HeLa cells was found in physcion which caused 50 % growth inhibition at a concentration of 0.1 ώg/ml.

Keywords

Malt Extract Agar Evaporation Residue Physcion Minimal Agar aPer Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashley J. N., Raistrick H., Richards T.: CLVIII. Studies in the biochemistry of micro-organisms. LXII. The crystalline colouring matters of species in theAspergillus glaucus series. Part II.Biochem. J. 33, 1291 (1939).PubMedGoogle Scholar
  2. Betina V., Betinová M., Nemec P., Popracová G.: Screening of new biogenic antimetabolites using prokaryotic and eukaryotic microbial models.Biológia (Bratislava)30, 659 (1975).Google Scholar
  3. Birch A. J., Blance G. E., David S., Smith H.: Studies in relation to biosynthesis. Part XXIV. Some remarks on the structure of echinulin.J. Chem. Soc. 3128 (1961).Google Scholar
  4. Carbone L. J., Johnson G. T.: Growth and pigmentation ofAspergillus umbrosum.Mycologia 56, 185 (1964).CrossRefGoogle Scholar
  5. Cardillo R., Fuganti C., Gatti G., Ghiringhelli D., Grasselli P.: Molecular structure of cryptoechinuline A, a new rnetabolits ofAspergillus amstelodami.Tetrahedron Letters 36, 3163 (1974).CrossRefGoogle Scholar
  6. Cardillo R., Fuganti C., Ghiringhelli D., Grasselli P., Gatti G.: Patern of incorporation of leuoine samples asymetrically labelled with 13C in the isopropyl unit into the C5-isoprenoid units of echinuline and flavoglaucine.J. Chem. Soc., Chem. Comm. 474 (1977).Google Scholar
  7. Cattel L., Grove J. F., Shaw D.: New metabolic products ofAspergillus flavus. Part III. Biosynthesis of asperentin.J. Chem. Soc., Perkin I, 2626 (1973).Google Scholar
  8. Davis N. D., Diener U. L., Eldridge D. W.: Production of aflatoxins B1 and G1 byAspergillus flavus in a semisynthetic medium.Appl. Microbiol. 14, 378 (1966).PubMedGoogle Scholar
  9. Dossena A., Marchelli R., Pochini A.: New metabolites ofAspergillus amstelcdami related to the biogenesis of neoechinulin.J. Chem. Soc., Chem. Comm. 771 (1974).Google Scholar
  10. Ďuračková Z., Betina V., Horníková B., Nemec P.: Toxicity of mycotoxins and other fungal metabolites toArtemia salina larvae.Zblt. Bakt. Parasit., Inf. u. Hygiene, II. Abt.132, 294 (1977).Google Scholar
  11. Gould B. S., Raistrick H.: CCXVIII. Studies in the biochemistry of micro-organisms. XL. The crystal-line pigments of species in theAspergillus glaucus series.Biochem. J. 28, 1640 (1934).PubMedGoogle Scholar
  12. Grove J. F.: New metabolic products ofAspergillus flavus. Part I. Asperentin, its methyl ethers, and 5’-hydroxyasperentin.J. Chem. Soc., Perkin I, 2400 (1972).Google Scholar
  13. Grove J. F.: New metabolic products ofAepergillus flavus. Part IV. 4’-hydroxyasperentin and 5’-hydroxyasperentin 8-methyl ether.J. Chem. Soc., Perkin I, 2704 (1973).Google Scholar
  14. Horáková K., Betina V.: Cytotoxic activity of macrocyclic metabolites from fungi.Neoplasma 24, 21 (1977).PubMedGoogle Scholar
  15. Miller M. W.:The pfizer Handbook of Microbial Metabolites, p. 209 and 465. McGraw-Hill, New York 1961.Google Scholar
  16. Quilico A., Cardani C.: The diffusion of echinulin in molds of the groupAspergillus glaucus.Atti Accad. naz. Lincei, Rend. Classe Sci. fis. mat. nat. 9, 220 (1950);Chem. Abstr. 45, 3909 (1951).Google Scholar
  17. Quilico A., Panizzi L., Mugnaini E.: Structure of flavoglaucin and auroglaucin.Nature 164, 26 (1949).PubMedCrossRefGoogle Scholar
  18. Rapper K. B., Fennell O. I.:The Genus Aspergillus. Williams & Wilkins, Baltimore 1965.Google Scholar
  19. Scott P. M., Van Walbeek W., MacLean W. M.: Cladosporin, a new fungal metabolite fromCladosporium cladosporoides.J. Antibiotics 24, 747 (1971).Google Scholar
  20. Shibata S., Natori S., Udagawa S.:List of Fungal Products, p. 76 and 80. Bannerstone House, Spring-field 1964.Google Scholar
  21. Steglich W., Lösel W.: Bestimmung der Stellung von o-Substituenten bei 1,8-Dihydroxy-Anthrachinon-Derivaten mit Hilfe der NMR Spektroskopie.Tetrahedron 25, 4391 (1969).CrossRefGoogle Scholar
  22. Thomson R. H.:Naturally Occuring Quinones, p. 429 and 502. Academic Press, London—New York 1971.Google Scholar
  23. Turner W. B.:Fungal Metabolites, p. 141, 157 and 158. Academic Press, London 1971.Google Scholar
  24. Westley J. W., Close W. A., Nitecki D. N., Halpern B.: Determination of steric purity and configuration of diketopiperazines by gas-liquid chromatography, thin-layer chromatography, and nuclear magnetic resonance speetrometry.Anal. Chem. 40, 1888 (1968).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1978

Authors and Affiliations

  • M. Podojil
    • 1
  • P. Sedmera
    • 1
  • J. Vokoun
    • 1
  • V. Betina
    • 2
  • H. Baráthová
    • 2
  • Z. Ďuračková
    • 2
  • K. Horáková
    • 2
  • P. Nemec
    • 2
  1. 1.Department of Biogenesis of Natural Products, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4
  2. 2.Departmènt of Technical Microbiology and Biochemistry, Faculty of ChemistrySlovak Technical UniversityBratislava

Personalised recommendations