Advertisement

Biologia Plantarum

, 28:23 | Cite as

Regulation of flower organogenesis: Phytohormone control of mRNA populations during sexual differentiation inMercurialis annua L.

  • M. Delaigue
  • T. Poulain
  • P. Dabat
  • E. Cabre
  • Raymonde Durand
  • B. Durand
Original Papers

Abstract

Some general data on the genetic control and the possibilities of regulation of developmental paths inDrosophila are furnished. The insights to be gained from this insect will surely have implications that extend far beyond the fruit-fly. For example, in plants, developmental programs for floral organs, implying specific proteins are known. Developmental mutants in which mutate alleles control developmental programs for flowering were also selected in several species (Zea, Pisum, Sorghum, Cucumis, Mercurialis). Chemicals, especially phytohormones interfering with these programs are discussed. The case of sexual differentiation ofMercurialis is discussed in more detail. In this species, sex organs are controlled by sex determination genes and by auxins (male) and cytokinins (female). Flowers of each sex can be characterized by specific mRNA populations. They were evidenced by translationin vitro in a cell-free system of the various kinds of mRNAs [poly(A), non poly(A), polysomes]. The feminisation of genetic males by cytokinins induces the mRNA population of female type. Evidence concerning the implications of cytokinins in protein synthesis before translation level is presented. This is also probably true for auxins, although direct evidence is lacking.

Keywords

High Molecular Mass Imaginal Disk Cytokinin Action mRNA Population Genetic Male 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baulcombe, D.: α-amylases and “Gibb-ons”. Molecular analysis of co-regulated gene families in wheat. -British Society for Developmental Biology, Leicester Meeting 2 –5 April 1984.Google Scholar
  2. Brachet, J.: Introduction à l’embryologie moléculaire. -Masson, Paris 1974.Google Scholar
  3. Coe, E. H., Neuffer, M. G.: Embryo cells and their destinies in the corn plant. -In:Sub-telny, S., Sussex, I. M. (ed.): The Clonal Basis of Development. Pp. 113–129. Academic Press, New York 1978.Google Scholar
  4. Durand, R., Durand, B.: Sexual differentiation in higher plants. -Physiol. Plant.60: 267–274, 1984.CrossRefGoogle Scholar
  5. Garcia-Bellido, A., Ripoll, P., Morata, G.: Developmental compartmentalization of the wing disk ofDrosophila. -Nature, new Biol.245: 251–253, 1973.CrossRefGoogle Scholar
  6. Garcia-Bellido, A., Ripoll, P., Morata, G.: Developmental compartmentalization of the dorsal mesothoracic disk ofDrosophila. -Dev. Biol.48: 132–147, 1976.PubMedCrossRefGoogle Scholar
  7. Gilham, P. T.: The synthesis of polynucleotide-cellulose and their use in the fractionation of polynucleotides. -J. chem. amer. Soc.83: 4982–4985, 1964.CrossRefGoogle Scholar
  8. Hansen, D. J., Bellman, S. K., Sacher, R. N.: Gibberellic-acid-controlled sex expression in corn tassels. -Crop Sci.16: 371–374, 1976.Google Scholar
  9. Heslop-Harrison, J.: The experimental control of sexuality and inflorescence structure inZea mays L. -Proc. Linn. Soc. London172: 108–129, 1961.Google Scholar
  10. Heslop-Harrison, J.: Sex expression in flowering plants. -Brookhaven Symposium in Bi-ology n∘ 16: Meristem and Differentiation. Pp. 109–125. Brookhaven nat. Laboratory Publ. Upton, New York 1964.Google Scholar
  11. Jackson, A. O., Larkins, B. A.: Influence of ionic strength, pH, and chelation of divalent metals on isolation of polyribosomes from tobacco leaves. -Plant Physiol.57: 5–10, 1976.PubMedCrossRefGoogle Scholar
  12. Jaiswal, V. S., Kumar, A.: Change in peroxidase and its multiple forms in relation to sex differentiation inCoccinia indica. -Biochem. Physiol. Pflanzen75: 578–581, 1980.Google Scholar
  13. Johri, M. M., Coe, J. R.: Clonal analysis of corn plant development. -Dev. Biol.97: 154–172, 1983.PubMedCrossRefGoogle Scholar
  14. Kauffman, S. A., Shymko, R. S., Trabert, K.: Control of sequential compartment formation inDrosophila. - Science199: 259–269, 1978.PubMedCrossRefGoogle Scholar
  15. Krishnamoorthy, H. N., Talukdar, A.: Chemical control of sex expression inZea mays L. -Z. Pflanzenphysiol.79: 91–94, 1976.Google Scholar
  16. Kulaeva, N. O., Khryanin, V. N., Chaïlakhyan, M. K. H.: [Genetic and hormonal regulation of sex expression in plants.] In Russ. -Dokl. Akad. Nauk SSSR152: 1275–1276, 1980.Google Scholar
  17. Lyndon, R. F., Jacqmard, A., Bernier, G.: Changes in protein composition of the shoot mer-istem during floral evocation inSinapis alba. -Physiol. Plant.59: 476–480, 1983.CrossRefGoogle Scholar
  18. Pelham, H. R., Jackson, R. J.: An efficient mRNA-dependent translation system from re-ticulocyte lysate.-Europe. J. Biochem.67: 247–256, 1976.CrossRefGoogle Scholar
  19. Pernès, J.: Genetic systems involved in the flowering process. -Coll. int. C.N.R.S. 285 (Physio-logie de la floraison section 6): 209–241, 1979.Google Scholar
  20. Sheridan, W. F., Neuffer, M. G.: Maize developmental mutants embryos unable to form leaf primordia. -J. Hered.73: 318–329, 1982.Google Scholar
  21. Sussex, I. M.: Do concepts of animal development apply to plant systems? -Brookhaven Symposium in Biology n∘ 25. Basic Mechanisms in Plant Morphogenesis. Pp. 145–151. Bookhaven nat. Laboratory Publ. Upton, New York 1974.Google Scholar

Copyright information

© Academia 1986

Authors and Affiliations

  • M. Delaigue
    • 1
  • T. Poulain
    • 1
  • P. Dabat
    • 1
  • E. Cabre
    • 1
  • Raymonde Durand
    • 1
  • B. Durand
    • 1
  1. 1.Laboratoire de Biologie VégétaleUniversité d’Orléans J. E. CNRSOrléans CedexFrance

Personalised recommendations