Chinese Science Bulletin

, Volume 44, Issue 9, pp 796–799 | Cite as

Crystallization and preliminary crystallographic analyses of human insulin mutant B9(Ser→Asp) in different aggregation forms

  • Xinqi Liu
  • Lei Jin
  • Ying Zhang
  • Markussen Jan
  • Dacheng Wang


B9(Ser→Asp) insulin, one of the fast-acting insulin mutants produced by protein engineering, has been crystallized. Three crystal forms have been obtained, which belong to orthorhombic, tetragonal and rhombohedral system, respectively. Each crystal form contains different aggregation units of the mutant, i.e. dimer or hexamer. The diffraction data of the former two have been collected beyond 0.2 nm resolution. The structural analyses and comparisons will provide some information about insulin ’ s self-association and the structural basis of the fast absorption produced from the mutation.


insulin mutant B9Asp insulin crystallization crystallographic parameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brader, M. L., Dunn, M. F., Insulin hexamrs: new conformations and applications,TIBS, 1991, 16: 341.PubMedGoogle Scholar
  2. 2.
    Xu, W. Q., Zeng, Z. H., Lei, K. al., The molecular design and production of a prolonged insulin mutant,Chinese Journrd of Biotechnology (in Chinese), 1994, 10(2): 142.Google Scholar
  3. 3.
    Markussen, J., Hougaard, P., Ribel, al., Soluble, prolonged-acting insulin derivatives. I. Degree of protraction and crystallizability of insulins substituted in the termini of the B-chain,Protein Engineering, 1987, l(3): 205.Google Scholar
  4. 4.
    Markussen, J., Diers, I., Engesgaard, A.el al., Soluble, prolongrd-acting insulin derivatives. II. Degree of protraction and crystallizability of insulins substituted in positions A17, B8, B13, B27 and B30,Protein Engineering, 1987, 1(3): 215.PubMedCrossRefGoogle Scholar
  5. 5.
    Markussen, J., Diers, I., Hougaard, al., Soluble, prolonged-acting insulin derivatives. III. Degree of protraction, crystallizability and chemical stability of insulins substituted in positions A21, B13, 823, n27, and B30.Protein Engineering, 1988, 2(2): 157.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu, B., Liang, Z. H., Tang, Y. al., Protein engineerering of insulin: [B9Glu] human insulin,Acta Biochimica et Biophysica Sinica (in Chinese), 1996, 28(3): 245.Google Scholar
  7. 7.
    Brange, J., Ribel, U., Hansen, J. al., Monomeric insulins obtained by protein enginecring and their medical implications,Nature, 1988, 333: 679.PubMedCrossRefGoogle Scholar
  8. 8.
    Howard, A. J., Cilliland, G. L., Finzel, B. al., The use of an imaging proportional counter in macromolecular crystallography,J. Appl. Cryst., 1987, 20: 383.CrossRefGoogle Scholar
  9. 9.
    Sakabe, N., A focusing Weissenberg camera with multi-layer-line for macromolecular crystallography,J. Appl. Cryst, 1983, 16: 542.CrossRefGoogle Scholar
  10. 10.
    Higashi, T., The processing of diffraction data taken on a srrcenlcss Weissenberg camera for macromolecular crystallography,J. Appl. Cryst., 1989, 22: 9.CrossRefGoogle Scholar
  11. 11.
    McRee, D.E.,Practical Protein Crystallography, San Diego: Academic Press, 1993, 11.Google Scholar
  12. 12.
    Thaller, C., Weaver, L. H., Eichele, al., Repeated seeding technique for growing large single crystals of proteins,I. Mol. Bwl., 1981, 147: 465.Google Scholar
  13. 13.
    Anne Marie M. Jørgensen, Køren M. Kristensen. Jens J. Ledet al., A study of the B9(Asp) mutant of hurnan insulin using nurlear magnetic resonance, distance geometry and restrained nolecular dynamics,J. Mol. Biol., 1992, 227: 1147.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Xinqi Liu
    • 1
  • Lei Jin
    • 1
  • Ying Zhang
    • 1
  • Markussen Jan
    • 2
  • Dacheng Wang
    • 1
  1. 1.Institute of BiophysicsChinese Acndemy of SciencesBeijinsChina
  2. 2.Novo Research InstituteNovo AlleDenmark

Personalised recommendations