Skip to main content

Formation of domain structure of erythrocyte membrane in Wistar rat fed with CeCl3 per os


To explore the possibility of absorption of lanthanides via digestive duct and their effects on the membrane structure and permeability of erythrocytes, the fine structure of erythrocyte membrane from Wistar rats, fed for 70 days of daily administrationper os with 20 mg CeCl3/kg weight, was imaged by means of atomic force microscopy and FT-IR deconvolution spectra. The results show that, although the erythrocytes maintain the intact shape, the change of secondary structure, aggregation and crosslinking of the protein particles of membrane surface and the enlarged lipid regions lead to the domain structure formation. This structure might be responsible for the increasing permeability of erythrocyte membrane.

This is a preview of subscription content, access via your institution.


  1. 1.

    Cheng, Y., Yang, X. D., Chen, B. W. et al., Cellular uptake and response to lanthanides, in Proceeding of the Second Sino-Dutch Workshop on the Environmental Behaviour and Ecotoxicology of REEs and Heavy Metals (ed. Applied Scientific Research of the Netherlands), Delft: Energy Research Press, 1997, 1–13.

    Google Scholar 

  2. 2.

    Cheng, Y., Chen, B. W., Lu, J. F. et al., The reaction of lanthanide ions with n-doxyl stearic acids and its utilization for the ESR study on the permeability of lipid-bilayer of erythrocyte membrane to gadolinium ions, J. Inorg. Bipchem., 1998, 69: 1.

    Article  CAS  Google Scholar 

  3. 3.

    Cohen, S. N., Chang, A. C. Y., Hsu, L., Nonchromosomal antibiotic resistance in bacteria: Genetic transformation ofEscherichia coli by R-factor DNA, Proc. Nat. Acad. Sci. USA, 1972, 69: 2110.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Huang, D. Y., Wu, S. J., He, D. L. et al., Influence of yttrium chloride on transformation of plasmid pBR 322, Chinese Biochem. J. (Special issue for the 8th National Symposium on Biochemistry and Molecular Biology) (in Chinese), 1998, 231–232.

  5. 5.

    Lal, R., John, S. A., Biological application of atomic force microscopy, Am. J. Physiol, Ser. C, 1994, 266: 1–21.

    Google Scholar 

  6. 6.

    Zhang, P. C., Bai, C. L., Huang, Y. M. el al., Atomic force microscopy study of fine structures of the entire surface of red blood cells, Scanning Microscopy, 1995, 9: 981.

    PubMed  CAS  Google Scholar 

  7. 7.

    Rosenberg, S. A., Guidotti, G., The protein of human erythrocyte membranes (1): Preparation, solubilization, and partial characterization. J. Biol. Chem., 1968, 243: 1985.

    PubMed  CAS  Google Scholar 

  8. 8.

    Dong, A., Huang, P., Caughey, W. S., Protein secondary structures in water from second-derivative amide I infrared spectra, Biochemistry, 1990, 29: 3303.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Fernandez, J. M., Cellular and molecular mechanics by atomic force microscopy: Capturing the exocytotic fusion pore in vivo? Proc. Natl. Acad. Sci. USA, 1997, 94: 9.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Sun, H. Y., Lin, H. K., Cao, Y. et al., Tb3+ binding to human erythrocyte spectrin resulting in conformation change and aggregation, J. Inorg. Biochem., 1995, 59: 29.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Seelig, J., Lehrmann, R., Terzi, E., Domain formation induced by lipid-ion and lipid-peptide interaction, Mol. Membr. Biol., 1995. 12: 51.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kui Wang.

About this article

Cite this article

Cheng, Y., Liu, M., Li, Y. et al. Formation of domain structure of erythrocyte membrane in Wistar rat fed with CeCl3 per os . Chin. Sci. Bull. 45, 426–429 (2000).

Download citation


  • AFM
  • FT-IR
  • CeCl3
  • domain structure
  • Wistar rat
  • erythrocyte