Advertisement

Chinese Science Bulletin

, Volume 45, Issue 5, pp 426–429 | Cite as

Formation of domain structure of erythrocyte membrane in Wistar rat fed with CeCl3 per os

  • Yi Cheng
  • Maozi Liu
  • You Li
  • Rongchang Li
  • Chunli Bai
  • Kui Wang
Notes

Abstract

To explore the possibility of absorption of lanthanides via digestive duct and their effects on the membrane structure and permeability of erythrocytes, the fine structure of erythrocyte membrane from Wistar rats, fed for 70 days of daily administrationper os with 20 mg CeCl3/kg weight, was imaged by means of atomic force microscopy and FT-IR deconvolution spectra. The results show that, although the erythrocytes maintain the intact shape, the change of secondary structure, aggregation and crosslinking of the protein particles of membrane surface and the enlarged lipid regions lead to the domain structure formation. This structure might be responsible for the increasing permeability of erythrocyte membrane.

Keywords

AFM FT-IR CeCl3 domain structure Wistar rat erythrocyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng, Y., Yang, X. D., Chen, B. W. et al., Cellular uptake and response to lanthanides, in Proceeding of the Second Sino-Dutch Workshop on the Environmental Behaviour and Ecotoxicology of REEs and Heavy Metals (ed. Applied Scientific Research of the Netherlands), Delft: Energy Research Press, 1997, 1–13.Google Scholar
  2. 2.
    Cheng, Y., Chen, B. W., Lu, J. F. et al., The reaction of lanthanide ions with n-doxyl stearic acids and its utilization for the ESR study on the permeability of lipid-bilayer of erythrocyte membrane to gadolinium ions, J. Inorg. Bipchem., 1998, 69: 1.CrossRefGoogle Scholar
  3. 3.
    Cohen, S. N., Chang, A. C. Y., Hsu, L., Nonchromosomal antibiotic resistance in bacteria: Genetic transformation ofEscherichia coli by R-factor DNA, Proc. Nat. Acad. Sci. USA, 1972, 69: 2110.PubMedCrossRefGoogle Scholar
  4. 4.
    Huang, D. Y., Wu, S. J., He, D. L. et al., Influence of yttrium chloride on transformation of plasmid pBR 322, Chinese Biochem. J. (Special issue for the 8th National Symposium on Biochemistry and Molecular Biology) (in Chinese), 1998, 231–232.Google Scholar
  5. 5.
    Lal, R., John, S. A., Biological application of atomic force microscopy, Am. J. Physiol, Ser. C, 1994, 266: 1–21.Google Scholar
  6. 6.
    Zhang, P. C., Bai, C. L., Huang, Y. M. el al., Atomic force microscopy study of fine structures of the entire surface of red blood cells, Scanning Microscopy, 1995, 9: 981.PubMedGoogle Scholar
  7. 7.
    Rosenberg, S. A., Guidotti, G., The protein of human erythrocyte membranes (1): Preparation, solubilization, and partial characterization. J. Biol. Chem., 1968, 243: 1985.PubMedGoogle Scholar
  8. 8.
    Dong, A., Huang, P., Caughey, W. S., Protein secondary structures in water from second-derivative amide I infrared spectra, Biochemistry, 1990, 29: 3303.PubMedCrossRefGoogle Scholar
  9. 9.
    Fernandez, J. M., Cellular and molecular mechanics by atomic force microscopy: Capturing the exocytotic fusion pore in vivo? Proc. Natl. Acad. Sci. USA, 1997, 94: 9.PubMedCrossRefGoogle Scholar
  10. 10.
    Sun, H. Y., Lin, H. K., Cao, Y. et al., Tb3+ binding to human erythrocyte spectrin resulting in conformation change and aggregation, J. Inorg. Biochem., 1995, 59: 29.PubMedCrossRefGoogle Scholar
  11. 11.
    Seelig, J., Lehrmann, R., Terzi, E., Domain formation induced by lipid-ion and lipid-peptide interaction, Mol. Membr. Biol., 1995. 12: 51.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Yi Cheng
    • 1
  • Maozi Liu
    • 2
  • You Li
    • 1
  • Rongchang Li
    • 1
  • Chunli Bai
    • 2
  • Kui Wang
    • 1
  1. 1.National Research Laboratories of Natural and Biomimetic DrugsBeijing Medical UniversityBeijingChina
  2. 2.Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations