Advertisement

Science in China Series A: Mathematics

, Volume 48, Supplement 1, pp 392–399 | Cite as

On the composition operators on the Bloch space of several complex variables

  • Zehua Zhou
  • Renyu Che
Article

Abstract

In this paper we first look upon some known results on the composition operator as bounded or compact on the Bloch-type space in polydisk and ball, and then give a sufficient and necessary condition for the composition operator to be compact on the Bloch space in a bounded symmetric domain.

Keywords

Bloch space bounded symmetric domains composition operator bergman metric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Timoney, R., Bloch function in several complex variables, I, Bull. London Math. Soc., 1980, 12: 241–267.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Timoney, R., Bloch function in several Vomplex variables, II, J. Reine Angew Math. 1980, 319: 1–22.MATHMathSciNetGoogle Scholar
  3. 3.
    Madigan, K., Matheson, A., Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 1995, 347: 2679–2687.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Shi, J. H., Luo, L., Composition operators on the Bloch space of several complex variables, Acta Mathematica Sinica, 2000, 16: 85–98.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Zhou, Z. H., Shi, J. H., Compactness of composition operators on the Bloch space in classical bounded symmetric domains, Michigan Math. J., 2002, 50: 381–405.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domains, Transl. Amer. Math. Soc., 1963, 1: 6.Google Scholar
  7. 7.
    Lu, Q. K., The Classical Manifolds and the Classical Domains (in Chinese), Shanghai: Shanghai Scientific and Technical Publishers, 1963.Google Scholar
  8. 8.
    Zhou, Z. H., Shi, J. H., Compact composition operators on the Bloch space in polydiscs, Science in China, Ser. A, 2001, 44: 286–291.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Zhou, Z. H., Shi, J. H., Composition operators on the Bloch space in polydiscs, Complex Variables, 2001, 46(1): 73–88.MATHMathSciNetGoogle Scholar
  10. 10.
    Zhou, Z. H., Composition operators on the Lipschitz space in polydiscs, Science in China, Ser. A, 2003, 46(1): 33–38.CrossRefGoogle Scholar
  11. 11.
    Zhou, Z. H., Shi, J. H., The essential normal of a composition operators on the Bloch space in polydiscs, Chinese Journal of Contemporary Mathematics, 2003, 24(2): 175–186.MATHMathSciNetGoogle Scholar
  12. 12.
    Zhou, Z. H., Stevo, S., Dana, C., Composition operator between Bloch-type space in polydisc, to appear.Google Scholar
  13. 13.
    Zhou, Z. H., The essential normal of a composition operators beween the Bloch-type space in polydiscs (to appear).Google Scholar
  14. 14.
    Zhou, Z. H., Weighted composition operator between Bloch-type space in polydisc (Part of them was reported in ICM2002, Geometry Function in SCV).Google Scholar
  15. 15.
    Zhou, Z. H., Zeng, H. G., Composition operator p-Bloch space and q-Bloch space in the unit ball, Progress in Natural Science, 2003, 13: 233–236.MATHMathSciNetGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Zehua Zhou
    • 1
    • 2
  • Renyu Che
    • 1
    • 2
  1. 1.Department of MathematicsTianjin UniversityTianjinChina
  2. 2.LiuHui Center for Applied MathematicsNankai University & Tianjin UniversityTianjinChina

Personalised recommendations