Science in China Series A: Mathematics

, Volume 48, Supplement 1, pp 283–294 | Cite as

Automorphism groups of causal symmetric spaces of Cayley type and bounded symmetric domains

  • Kaneyuki Soji 


Symmetric spaces of Cayley type are a higher dimensional analogue of a one-sheeted hyperboloid in ℝ3. They form an important class of causal symmetric spaces. To a symmetric space of Cayley type M, one can associate a bounded symmetric domain of tube type D. We determine the full causal automorphism group of M. This clarifies the relation between the causal automorphism group and the holomorphic automorphism group of D.


causal structure symmetric space of Cayley type bounded symmetric domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kaup, W., Matsushima, Y., Ochiai, T., On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math., 1970, 92: 475–497.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Koranyi, A., Wolf, J. A., Realization of Hermitian symmetric spaces as generalized half-planes, Ann. of Math., 1965, 81: 265–288.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Kaneyuki, S., On the causal structures of the Šilov boundaries of symmetric bounded domains, in Prospects in Complex Geometry, Lect. Notes in Math., Vol. 1468, Berlin: Springer-Verlag, 1991, 127–159.Google Scholar
  4. 4.
    Ólafsson, G., Symmetric spaces of Hermitian type, Diff. Geom. and Appl., 1991, 1: 195–233.MATHCrossRefGoogle Scholar
  5. 5.
    Kaneyuki, S., Kozai, M., Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 1985, 8: 81–98.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kaneyuki, S., Compactification of parahermitian symmetric spaces and its applications, II: Stratifications and automorphism groups, J. Lie Theory, 2003, 13: 535–563.MATHMathSciNetGoogle Scholar
  7. 7.
    Kaneyuki, S., On orbit structure of compactifications of parahermitian symmetric spaces, Japan. J. Math., 1987, 8: 333–370.MathSciNetGoogle Scholar
  8. 8.
    Hilgert, J., Ólafsson, G., Causal Symmetric Spaces, Geometry and Harmonic Analysis, Perspective in Mathematics 18, New York: Academic Press, 1996.Google Scholar
  9. 9.
    Ólafsson, G., Ørsted, B., Causal compactification and Hardy spaces, Trans. Amer. Math. Soc. 1999, 351: 3771–3792.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Takeuchi, M., On conjugate loci and cut loci of compact symmetric spaces, Tsukuba J. Math., 1979, 3: 1–29.MATHGoogle Scholar
  11. 11.
    Kaneyuki, S., The Sylvester’s law of inertia in simple graded Lie algebras, J. Math. Soc. Japan, 1998, 50: 593–614.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Satake, I., Algebraic Structures of Symmetric Domains, Tokyo: Iwanami Shoten and Princeton: Princeton University Press, 1980.MATHGoogle Scholar
  13. 13.
    Kaneyuki, S., The Sylvester’s law of inertia for Jordan algebras, Proc. Japan Acad. Ser. A, 1988, 64: 311–313.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tanaka, N., On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J., 1985, 14: 277–351.MATHMathSciNetGoogle Scholar
  15. 15.
    Kaneyuki, S., Compactification of parahermitian symmetric spaces and its applications, I: Tube type realizations, in Proc. of the III International Workshop, Lie Theory and its Applications in Physics (eds. Doebner, H. D., Dobrev, V. K., Hilgert, J.), Singapore: World Scientific, 2000, 63–74.Google Scholar
  16. 16.
    Vinberg, E. B., The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 1963, 12: 340–403.MATHGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Department of MathematicsNihon Institute of TechnologyMiyashiro-choJapan

Personalised recommendations