Folia Microbiologica

, Volume 17, Issue 5, pp 357–365 | Cite as

Uptake of amino acids by actidione-treated yeast cells

IV. Interaction with sugars
  • A. Kotyk
  • L. Říhová


The steady-state levels of distribution of glycine,l-aspartic acid,l-leucine and, to a lesser extent, ofl-lysine andl-methionine, in actidione-treated baker’s yeast cells are significantly altered (usually decreased) in the presence ofd-glucose,d-mannose,d-fructose, 2-deoxy-d-glucose, maltose, sucrose and, after induction,d-galactose. Stimulatory effects ofd-ribose,l-sorbose andd-xylose are not highly significant. Pronounced effects of sugars were also found anaerobically. No effect of amino acids on sugar uptake was observed. Three types of interaction appear to be present: (1) increase of energy reserves by metabolized sugars; (2) increased rate of carrier breakdown in the presence of metabolized sugars; (3) interaction at the carrier level in a “heteropolyvalent” membrane complex.


Actidione Amino Acid Uptake Intracellular Amino Acid Carrier Level Active Sugar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarado F.: Transport of sugars and amino acids in intestine. Evidence for a common carrier.Science 151, 1010 (1966).PubMedCrossRefGoogle Scholar
  2. Alvarado F.: La membrana celular como mosaico de funciones.Bol. R. Soc. Españ. Hist. Nat. (Biol.) 68, 33 (1970).Google Scholar
  3. Christensen H. N., Liang M., Archer E. G.: A distinct Na+-requiring transport system for alanine, serine, cysteine, and similar amino acids.J. Biol. Chem. 242 5237 (1967).PubMedGoogle Scholar
  4. Cirillo V. P.: Galactose transport inSaccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system.J. Bacteriol. 95, 1727 (1968).PubMedGoogle Scholar
  5. Crane R. K.: Hypothesis for mechanism of intestinal active transport of sugars.Fed. Proc. 21, 891 (1962).PubMedGoogle Scholar
  6. Eddy A. A., Backen K., Watson G.: The concentration of amino acids by yeast cells depleted of adenosine triphosphate.Biochem. J. 120, 853 (1970).PubMedGoogle Scholar
  7. Farkaš V., Bauer Š., Zemek J.: Metabolism of 2-deoxy-d-glucose in baker’s yeast. III. Formation of 2,2′-dideoxy-α, α′-trehalose.Biochim. Biophys. Acta 18, 77 (1969).Google Scholar
  8. Kotyk A.: Properties of the sugar carrier in baker’s yeast. II. Specificity of transport.Folia Microbiol. 12, 121 (1967).Google Scholar
  9. Kotyk A., Haškovec C.: Properties of the sugar carrier in baker’s yeast. III. Induction of the galactose carrier.Folia Microbiol. 13, 12 (1968).CrossRefGoogle Scholar
  10. Kotyk A., Ponec M., Říhová L.: Uptake of amino acids by actidione-treated yeast cells. I. Specificity of carriers.Folia Microbiol. 16, 432 (1971a).CrossRefGoogle Scholar
  11. Kotyk A., Říhová L., Ponec M.: Uptake of amino acids by actidione-treated yeast cells. II. Effect of incubation conditions and metabolic inhibitors.Folia Microbiol. 16, 445 (1971b).CrossRefGoogle Scholar
  12. Kotyk A., Říhová L., Ponec M.: Uptake of amino acids by actidione-treated yeast cells. II. Effect of sodium and potassium ions.Folia Microbiol. 16 451 (1971c).CrossRefGoogle Scholar
  13. Kotyk A., Michaljaničová D.: Monosaccharide uptake by isolated yeast plasmalemma.J. Membrane Biol., in press.Google Scholar
  14. Kotyk A., Říhová L.: Energy requirement for amino acid uptake inSaccharomyces cerevisiae.Folia Microbiol. 17, 353 (1972).CrossRefGoogle Scholar
  15. Loomis W. F., Magasanik B.: The relation of catabolite repression to the induction system for β-galactosidase inEscherichia coli.J. Mol. Biol. 8, 417 (1964).PubMedGoogle Scholar
  16. Newey H., Smyth D. H.: Effect of sugars on intestinal transfer of amino acids.Nature 202, 400 (1964).PubMedCrossRefGoogle Scholar
  17. Poncová M., Kotyk A.: Interaction of monosaccharides with amino acid uptake inSaccharomyces cerevisiae.Curr. Mod. Biol. 1, 189 (1967).PubMedGoogle Scholar
  18. Stickland L. H.: Endogenous respiration and polysaccharide reserves in baker’s yeast.Biochem. J. 64, 498 (1956).PubMedGoogle Scholar
  19. Van Steveninck J., Dawson E. C.: Active and passive galactose transport in yeast.Biochim. Biophys. Acta 150, 47 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1972

Authors and Affiliations

  • A. Kotyk
    • 1
  • L. Říhová
    • 1
  1. 1.Laboratory for Cell Membrane Transport, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations