Folia Microbiologica

, Volume 36, Issue 5, pp 485–492 | Cite as

Effect of external pH on acidification and excretion of ethanol intermediates byCandida utilis

  • J. Páca
  • J. Votruba


External pH affects the acidification induced by ethanol. The apparent specific rate of acidification depends on the dissociation properties and production of carbon dioxide, acetic and lactic acid which are intermediates of ethanol oxidation. The organic acids are transported by Nernst — Einstein diffusion. We designed and identified a new and simple mathematical model that allows us to describe the effect of external pH on nonstationary transport of dissociated intermediates of ethanol oxidation.


Ethanol Oxidation Candida Utilis Ethanol Addition Secondary Active Transport Maximum Specific Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



concentration of intermediate, mg/L


diffusion coefficient

dC/dl, dE/dl

gradients of concentration and electrical potential across the cell wall


Faraday constant


concentration of hydrogen ions, mol/L


total flux of ionizable species across the cell wall

P, K

parameters (in Eq. 4)


initial pH value, -log(mol/L)


acidification power, mmol H+ per g dry mass per h


universal gas constant


absolute temperature


time, h


dry mass of biomass, g/L


charge of ionized molecule


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. de Boor C.:A Practical Guide to Splines. Springer, New York 1978.Google Scholar
  2. Cartwright C.P., Juroszek J.G., Beavan M.G., Ruby F.M.S., De Morais S.M.F., Rose A.M.: Ethanol dissipates the protonmotive force across the plasma membrane ofSaccharomyces cerevisiae.J.Gen.Microbiol.132, 369–377 (1986).Google Scholar
  3. Glaser H.V., Hōfer M.: Effect of ethanol on cell growth, metabolism and cation fluxes in the yeastMetschnikowia reukaufii.J.Gen.Microbiol.136, 1265–1270 (1990).Google Scholar
  4. Guijarro J.M., Lagunas R.:Saccharomyces cerevisisae does not accumulate ethanol against a concentration gradient.J.Bacteriol.160, 874–878 (1984).PubMedGoogle Scholar
  5. Ingram L.O., Buttke T.M.: Effects of alcohols on microorganisms.Adv.Microbial.Physiol.25, 254–300 (1984).Google Scholar
  6. Jimenez J., van Uden N.: Use of extracellular acidification for rapid testing of ethanol tolerance in yeasts.Biotechnol.Bioeng.27, 1596–1598 (1985).CrossRefPubMedGoogle Scholar
  7. Kilian S.A., du Preez J.C., Gericke M.: The effect of ethanol on growth rate and passive proton diffusion in yeasts.Appl.Microbiol.Biotechnol.32, 90–94 (1989).CrossRefGoogle Scholar
  8. Kotyk A.: Coupling of secondary active transport with the chemical potential gradient of protons.J.Bioenerg.Biomembr.5, 307–319 (1983).CrossRefGoogle Scholar
  9. Kotyk A., Sigler K.: Transmembrane movements of protons in simple eucaryotic cells.Studia Biophys.84, 55 (1981).Google Scholar
  10. Leao C., van Uden N.: Effect of ethanol and other alkanols on glucose transport on the ammonium transport ofSaccharomyces cerevisiae.Biotechnol.Bioeng.25, 2085–2090 (1983).CrossRefPubMedGoogle Scholar
  11. Leao C., van Uden N.: Effects of ethanol and other alkanols on passive proton influx in the yeastSaccharomyces cerevisiae.Biochim.Biophys.Acta774, 43–48 (1984).PubMedCrossRefGoogle Scholar
  12. van de Mortel J.B.J., Korhout H., Theuvenet A.P.R., Borst-Pauwels G.W.F.H.: Transient hyperpolarization of yeast by glucose and ethanol.Biophys.Biochim.Acta936, 421–428 (1988).CrossRefGoogle Scholar
  13. Opekarová M., Sigler K.: CO2-dependent K+ efflux in yeast utilizing endogenous substrates.Cell.Mol.Biol.31, 195–200 (1985).PubMedGoogle Scholar
  14. Páca J., Grégr V.: Growth characteristics ofCandida utilis on volatile substrates in a multistage tower fermentor.Biotechnol.Bioeng.19, 539–554 (1977).PubMedCrossRefGoogle Scholar
  15. Páca J., Votruba J.: Effect of external pH on the respiration activity ofCandida utilis induced by ethanol.Appl.Microbiol.Biotechnol.33, 438–441 (1990).CrossRefGoogle Scholar
  16. Páca J., Votruba J.: Effect of external pH on ethanol oxidation byCandida utilis.Folia Microbiol.36, 478–484 (1991).CrossRefGoogle Scholar
  17. Pankova L.M., Shvinka J.E., Beker M.J.: Regulation of intracellular H+ balance inZymomonas mobilis 113 during the shift fron anaerobic to aerobic conditions.Appl.Microbiol.Biotechnol.28, 583–588 (1988).CrossRefGoogle Scholar
  18. Petrov V.V., Okorokov L.A.: Increase of the anion and proton permeability ofSaccharomyces carlsbergensis plasmalemma byn-alcohols as a possible cause of its de-energization.Yeast6, 311–318 (1990).PubMedCrossRefGoogle Scholar
  19. Prell A., Páca J., Sigler K.: Proton extrusion and attendant transport phenomena inCandida utilis induced by ethanol.Appl.Microbiol.Biotechnol.34, in press (1991).Google Scholar
  20. Slavík J.: Intracellular pH of yeast cells measured with fluorescent probes.FEBS Lett.140, 22–26 (1982).PubMedCrossRefGoogle Scholar
  21. Slavík J., Kotyk A.: Intracellular pH distribution and transmembrane pH profile of yeast cells.Biochim.Biophys.Acta766, 679–684 (1984).PubMedCrossRefGoogle Scholar
  22. Sigler K., Knotková A., Kotyk A.: Factors governing substrateinduced generation and extrusion of protons in the yeastSaccharomyces cerevisiae.Biochim.Biophys.Acta643, 572–582 (1981).PubMedCrossRefGoogle Scholar
  23. Unger P., Voznakova Z., Páca J.: Analysis of cell metabolic products and fermentation gases by gas chromatography.J.Appl.Chem.Biotechnol.27, 150–154 (1977).CrossRefGoogle Scholar
  24. Votruba J., Parvez S., Sigler K.: Buffering capacity as an indicator of physiological state in continuous culture ofCandida utilis.Folia Microbiol.31, 312–318 (1986).Google Scholar
  25. Yoshino M., Murakami K.:In situ studies on AMP deaminase as a control system of the adenylate energy charge in yeasts.Biochim.Biophys.Acta672, 10–20 (1981).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1991

Authors and Affiliations

  • J. Páca
    • 1
  • J. Votruba
    • 2
  1. 1.Department of Fermentation Chemistry and BioengineeringInstitute of Chemical TechnologyPrague 6
  2. 2.Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations