Advertisement

Chinese Science Bulletin

, Volume 43, Issue 20, pp 1673–1680 | Cite as

Challenge of new biological energy resources

Arguments on structure of active site of NiFe hydrogenase
  • Qi Zhang
  • Daizheng Liao
  • Genglin Wang
Special Topic
  • 19 Downloads

Abstract

Hydrogenases are enzymes that can reversibly split molecular hydrogen. Study on the structure of the active site and the mechanism of catalysis has drawn great attention because the results may be useful for the design of cheap biomimetic hydrogen catalysts for fuel cells, or as model for the photoproduction of H2. At one time the active site was generally considered to be composed of mononuclear nickel complex with ligands from the polypeptide. A breakthrough in the understanding of the structure of [NiFe] Hases occurred with the resolution crystal structure ofD. gigas [NiFe] Hases in 1995. The unexpected result challenged the previously reported spectroscopic studies and caused some academic arguments. Some methods and results used for insight into [NiFe] Hases have to be reconsidered. Different viewpoints concerning the structure of active site of [NiFe] Hases in different periods and some remaining questions will be presented.

Keywords

Hydrogenases nickel-iron complexes heterodinuclear cluster active site fuel cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adarns, M. W. W., The structure and mechanism of iron-hydrogenases,Biochim. Biophys. Acta, 1990, 1020: 115.CrossRefGoogle Scholar
  2. 2.
    Thauer, R. K., Klein, A. R., Hartmann, G. C., Reactions with molecular hydrogen in microorganism: Evidence for a purely organic hydrogenation catalyst,Chem. Rev., 1996, 96: 3031.PubMedCrossRefGoogle Scholar
  3. 3.
    Pavlov, M., Siegbahn, P. E. M., Blomberg, M. R. A.et al., Mechanism of H-H activation by nickel-iron hydrogenase,J. Am. Chem. Soc., 1998, 120: 548.CrossRefGoogle Scholar
  4. 4.
    Happe, R. P., Rosebwm, W., Plerlk, A. J.et al., Biological activition of hydrogen,Nature, 1997, 385: 126.PubMedCrossRefGoogle Scholar
  5. 5.
    Adams, M. W. W., The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria,FEMS Microbiol. Rev., 1990, 75: 219.CrossRefGoogle Scholar
  6. 6.
    Cammack, R., Rao, K. K., Serra, J.,et al., The redox properties of the iron-sulfur cluster in hydrogenase fromChromatium vinosum, Strain D. Biochimie, 1986, 68: 93.Google Scholar
  7. 7.
    Cammack, R., Nickel in metalloproteins,Adv. Inorg. Chem., 1988, 32: 297.CrossRefGoogle Scholar
  8. 8.
    Volbeda, A., Charon, M. H., Piras, C.et al., Crystal structure of the nickel-iron hydrogenase fromDesultovibrio gigas, Nature, 1995, 373: 580.PubMedCrossRefGoogle Scholar
  9. 9.
    Volbeda, A., Garcin, E., Piras, C.et al., Strutureof the [NiFe] hydrogenase active site: Evidence for biologically uncommon Fe ligands,J. Am. Chem. Soc., 1996, 118: 12989.CrossRefGoogle Scholar
  10. 10.
    de Lacey, A. L., Hatchikian, E. C., Volbeda, A.et al., Infrared-spectroelectrochemical characterization of the [NiFe] hydmgenase ofDesulfovibrio gigas, J. Am. Chem. Soc., 1997, 119: 7181.CrossRefGoogle Scholar
  11. 11.
    Gu, Z., Dong, J., Allom, L. B.et al., Structure of the Ni sites in hydrogenase by X-ray absorption spectroscopy species variation and the effects of redox poise,J. Am. Chem. Soc., 1996, 118: 11155.CrossRefGoogle Scholar
  12. 12.
    Goldman, C. M., Olmstead, M. M., Mascharak, P. K., Discrete mononuclear and dinuclear nickel (II) complexes of alkane- and areneselenolates: Syntheses, structures, and properties of (Et4N)2[Ni2(Se(CH2)3Se)3], (Ph4P)2[Ni(SePh)4], and (Ph4P)2[Ni2(μ-2,4,6-(Me)3C6H2Se)2(2,4,6-(Me)3C6H2Se)4] · 8CH3CN,Inorg. Chem., 1996, 35: 2752.CrossRefGoogle Scholar
  13. 13.
    Van der Spek, T. M., Arendsen, A. F., Happe, R. P.et al., Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of Infrared spectroscopy,Eur. J. Biochem., 1996, 237: 629.PubMedCrossRefGoogle Scholar
  14. 14.
    Darmbourg, D. J., Reibenspies, J. H., Chia-Huei, Laiet al., Analysis of an organometallic iron site model for the heterodimetallic unit of [NiFe] hydrogenase,J. Am. Chem. Soc., 1997, 119: 7903CrossRefGoogle Scholar
  15. 15.
    Fontecilla-Camps, J. C., The active site of Ni-Fe hydrogenases: Model chemistry and crystallographic results,J. Biol. Inorg. Chem., 1996, 1: 91.CrossRefGoogle Scholar
  16. 16.
    James, T. L., Cai, L., Muetterties, M. C.et al., Dihydrogen evolution by protonation reactions of nickel (I),Inorg. Chem., 1996, 35: 4148.PubMedCrossRefGoogle Scholar
  17. 17.
    Hua-Fen, Hsu, Koch, S. A., Popescu, C. V.et al., Chemistry of iron thiolate complexes with CN and CO, Models for the [Fe(CO)(CN2)] structural unit in Ni-Fe hydrogenase enzymes,J. Am. Chem. Soc., 1997, 119: 8371CrossRefGoogle Scholar
  18. 18.
    Davoust, C. E., Doan, P. E., Hoffman, B. M., Q-band pulsed electron spin-echo spectrometer and its application to EN-WR and ESEEM,J. Magn. Reson., 1996, A119: 38.Google Scholar
  19. 19.
    Lai, C. H., Reibenspies, J. H., Darensbourg, M. Y., Thiolate bridged nickel-iron complexes containing both iron(0) and iron(II) carbonyls,Angew. Chem. Int. Ed. Engl., 1996, 35: 2390.CrossRefGoogle Scholar
  20. 20.
    Musie, G., Farmer, P. J., Tuntulani, T.et al., Influence of sulfur metalation on the accessibility of the NiII/I couple in [N, N’-Bis(2-mrcaptoethyl)-1, 5-diazacyclo-octanato] nickel (II): Insight into the redox properties of [NiFe]-hydrogenase,Inorg. Chem., 1996, 35: 2176.PubMedCrossRefGoogle Scholar
  21. 21.
    Nguyen, D. H., Hsu, H. -F., Millar, M.et al., Nickel (II) thiolate complex with carbon monoxide and its Fe(II) analog: Synthetic models for CO adducts of nickel-iron-containing enzymes,J. Am. Chem. Soc., 1996, 118: 8963.CrossRefGoogle Scholar
  22. 22.
    Hembre, R. T., Scott, McQueen, J., Day, V. W., Coupling H2 to electron transfer with a 17-electron heterobimetallic hydride: A “redox switch” model for the H2-activating center of hydrogenase,J. Am. Chem. Soc., 1996, 118: 798.CrossRefGoogle Scholar
  23. 23.
    Hu, Z. G., Spangler, E., Nature of the C-cluster in Ni-containing carbon monoxide dehydrogenases,J. Am. Chem. Soc., 1996, 118: 830.CrossRefGoogle Scholar
  24. 24.
    Miedaner, A., Curtis, C. J., Wander, S. A.et al., Dicationic nickel (II), carbonyl complexes containing tetradentate ligands,Organometallics, 1996, 15: 5185.CrossRefGoogle Scholar
  25. 25.
    Belinsky, M., Hyperfine evidence of strong double exchange in multimetallic [Fe4S4]-Fe active center ofEscherichia coli sulfite reductase,J. Biol. Inorg. Chem., 1996, 1: 186.CrossRefGoogle Scholar
  26. 26.
    Osterloh, F., Saak, W., Ham, D.et al., Synthesis, X-ray structure and electrochemical characterization of a binuclear thiolate bridged Ni-Fe-nitrosyl complex, related to the active site of NiFe hydrogenase,J. Chem. Soc. Chem. Gommun., 1997, 779.Google Scholar
  27. 27.
    Delville-Desbois, M. H., Mross, S., Astruc, D.et al., 17- and 19-electron complexes [FeIII5-C5R5)(S2CNMe2)L]II + (n = 1,0): Electronic structure and substitution and redox chemistry. Formation of [FeIV5-C5R5)(dtc)2] and characterization of both 17e and 19e states of a transition-metal complex,J. Am. Chem. Soc., 1996, 118: 4133.CrossRefGoogle Scholar
  28. 28.
    Huyett, J. E., Carepo, M., Pamplona, A.,et al.,57Fe Q-band pulsed ENDOR of the hetero-dinuclear site of nickel hydrogenase: Comparison of the NiA, NiB, and NiC states,J. Am. Chem. Soc., 1997, 119: 9291.CrossRefGoogle Scholar
  29. 29.
    Wen-Feng, Liaw, Yih-Chern, Horng, Der-Shiaw, Ouet al., Distorted square planar Ni(II)-chalcogenolate carbonyl complexes [Ni(CO)(SPh)n(SePh)n-1] (n = 0, 1, 2): Relevance to the nickel site in CO dehydrogenases and [NiFeSe] hydrogenase,J. Am. Chem. Soc., 1997, 119: 9299.CrossRefGoogle Scholar
  30. 30.
    Dunbar, K. R., Heintz, R. A., Chemistry of transition metal cyanide compounds: modern perspectives,Prog. Inorg. Chem., 1997, 45: 283.CrossRefGoogle Scholar
  31. 31.
    Goldman, C. M., Mascharak, P. K., Reactions of H2 with the nickel site(s) of the [FeNi] and [FeNiSe] hydrogenases: What do the model complexes suggest?Comments Inorg. Chem., 1995, 18: 1.CrossRefGoogle Scholar
  32. 32.
    Bagyinka, C., Whitehead, J. P., Maroney, M. J., An X-ray absorption spectroscopic study of nickel redox chemistry in hydrogenase,J. Am. Chem. Soc., 1993, 115: 3576.CrossRefGoogle Scholar
  33. 33.
    Maroney, M. J., Colpas, G. J., Bagyinka, C.et al., EXAFS investigations of the Ni site in Thiocapsa Roseopersicina hydrogenase: Evidence for a novel Ni, Fe, S cluster,J. Am. Chem. Soc., 1991, 113: 3962.CrossRefGoogle Scholar
  34. 34.
    Maroney, M. J., The role of nickel in hydrogenases: Implications for a heterodinuclear active site,Comments Inorg. Chem., 1995, 17: 347.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Qi Zhang
    • 1
  • Daizheng Liao
    • 1
  • Genglin Wang
    • 1
  1. 1.Department of ChemistryNankai UniversityTianjinChina

Personalised recommendations