Advertisement

Chinese Science Bulletin

, Volume 43, Issue 18, pp 1536–1541 | Cite as

The v-v energy transfer of highly vibrationally excited states (I)

Vibrational quenching of CO(v) by CO2
  • Baoshan Wang
  • Yueshu Gu
  • Yong He
  • Fan’ao Kong
Bulletin

Abstract

The relaxation of the highly vibrationally excited CO (v = 1–8) by CO2 is studied by timeresolved Fourier transform infrared emission spectroscopy (TR FTIR). 193 nm laser photolysis of the mixture of CHBr3 with O2 generates the highly vibrationally excited CO(v) molecules. TR FTIR records the intense infrared emission of CO(v→v-1). The vibrational populations of each level of CO(v) have been determined by the method of spectral simulation. Based on the evolution of the time resolved populations and the differential method, 8 energy transfer rate constants of CO(v = 1–8) to CO2 molecules areobtained: (5.7±0.1), (5.9±0.1), (5.2±0.2), (3.4±0.2), (2.4±0.3), (2.2±0.4), (2.0±0.4) and (1.8±0.6) (1014 cm3 · molecule−1 · s−1), respectively. A two-channel energy transfer model can explain the feature of the quenching of CO(v) by CO2. For the lower vibrational states of CO, the vibrational energy transfers preferentially to the u3 mode of CO2 For the higher levels, the major quenching channel changes to the vibrational energy exchange between CO(v→v-1) and the u1 mode of CO2.

Keywords

time-resolved IR spectrum highly vibrationsl excited state vibrational energy transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yardley, L. T.,Introduction to Molecular Energy Transfer, New York: Academic Press, 1980, 55–80.Google Scholar
  2. 2.
    Hancock, G., Smith, I. W. M., Quenching of infrared chemiluminescence, 1: The rate of De-Excitation of CO (4≤v≤13) by He, CO, NO, N2, Q2, OCS, N2O, and CO2,Appl. Opt., 1971, 10(8): 1827.CrossRefGoogle Scholar
  3. 3.
    Caledonia, G. E., Green, B. D., Murphy, R. E., A study of the vibrational level dependent quenching of CO (v = 1–16) by CO2,J. Chem. Phys., 1979, 71: 4369.CrossRefGoogle Scholar
  4. 4.
    Li, H. Z., Wang, X. B., Kong, F. A.et al., The laser photolysis of CHBr3 + O2 Acta Physico-Chimica Sinica (in Chinese), 1993, 9: 452.Google Scholar
  5. 5.
    Zhu, Q. H., Huang, S. L., Wang, X. B.et al., Time-resolved Fourier transform infrared emission spectroscopy,Chinese J. Chem. Phys. (in Chinese), 1993, 6: 87.Google Scholar
  6. 6.
    Christoph, M., Michael, J. F., Dwayne, E. H.et al., Rate constants for removal of CH(D)(v = 0 and 1) by collisions with N2, CO, O2. NO and NO2 at 298K and with CO2 at 296≤T/K≤873,J. Chem. Soc., Faraday Trans., 1996, 92 (13): 2335.CrossRefGoogle Scholar
  7. 7.
    Wang, X. B., Li, H. Z., Kong, F. A. et al., The vibrational Quenching of NO (v = 1–11) by N2O studied by time-resolved Fourier transform infrared emission spectroscopy.Chem. Phys. Lett., 1993, 208(3,4); 290.CrossRefGoogle Scholar
  8. 8.
    Miller, D. J., Millikan, R. C., Vibration-vibration energy exchange between carbon monoxide and oxygen,Chem. Phys. Lett., 1974, 27(1): 10.CrossRefGoogle Scholar
  9. 9.
    Green, W. H., Hancock, J. K., Measurement of CO (v = 1) vibrational energy transfer rates using a frequency double CO2 laser,J. Chem. Phys., 1973, 59: 4326.CrossRefGoogle Scholar
  10. 10.
    Millikan, R. C., White, D. R., Systematics of vibrational relaxation,J. Chem. Phys., 1963, 39(12): 3209.CrossRefGoogle Scholar
  11. 11.
    Wang, X. B., Li, H. Z., Kong, F. A.et al., 193 nm photolysis of N2O:The vibrational excited NO(v) and the quenching by N2O,Chinese J. Chem. Phys. (in Chinese), 1993, 6(5): 398.Google Scholar
  12. 12.
    Schwartz, R. N., Slawsky, Z. I., Herzfeld, K. F., Calculation of vibrational relaxation times in gases,J. Chem. Phys., 1952, 20(10): 1591.CrossRefGoogle Scholar
  13. 13.
    Schwarts, R. N., Herzfeld, K. F., Vibrational relaxation times in gases (three-dimensional treatment),J. Chem. Phys., 1954, 22(5): 767.CrossRefGoogle Scholar
  14. 14.
    Hamzeh, A. H., Ewing, G. E., Vibrational energy transfer between CO and CH4, CD4, CF4 in liquid Ar,J. Chem. Phys., 1985, 82: 5442.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Baoshan Wang
    • 1
  • Yueshu Gu
    • 1
  • Yong He
    • 2
  • Fan’ao Kong
    • 2
  1. 1.Department of ChemistryShandong UniversityJinanChina
  2. 2.State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryBeijingChina

Personalised recommendations