Chinese Science Bulletin

, Volume 43, Issue 19, pp 1585–1593 | Cite as

K/T boundary: Discussion of the platinum group elements as indicators of extraterrestrial materials

  • Quanlin Hou
  • Peixue Ma
  • Xin Ju
Special Topic


Whether the platinum group elements (PGE) can be taken as the indicators of extraterrestrial materials is a very important and interesting scientific problem. It is discussed on the basis of systematic investigation and study of a great amount of related literature. The following conclusions can be obtained: (i) extraterrestrial impact event can cause the PGE anomaly; conversely, the PGE anomaly may not represent the existence of extraterrestrial impact event, because the PGE anomaly can be caused by many terrestrial events (e. g. volcanic activity); (ii) the PGE anomaly, especially the global PGE anomaly can inspire us to think it from extraterrestrial event, but it may not be as useful as previously thought as unambiguous identifiers of large extraterrestrial impact event in the earth’s history.


platinum group elements (PGE) extraterrestrial Impact event K/T boundary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, L.W., Alvarez, W., Asaro, F., Extraterrestrial cause for the Cretaceous-Tertiary extinction: Experimental results and theoretical interpretation,Science, 1980, 208(4448): 1095.PubMedCrossRefGoogle Scholar
  2. 2.
    Hildebrand, A.R., Chicxulub crater: A possible K-T boundary impact crater on the Yucatan Peninsula, Mexico,Geology, 1991, 19: 867.CrossRefGoogle Scholar
  3. 3.
    Chai, C. F., Neutron activation analysis of platinum group elements as indicators of extraterrestrial materials,Isotopenpraxis, 1988, 24: 257.Google Scholar
  4. 4.
    Kyte, F. T., Zhiming, Z., Wasson, J.T., Siderophile-enriched sediments from the Cretaceous-Tertiary boundary,Nature, 1980, 288: 651.CrossRefGoogle Scholar
  5. 5.
    Hou Quanlin, Ma Peixue, Interelement interferences in platinum-group elements analysis by NAA,Rock and Mineral Analysis (in Chinese), 1997, 16(1): 18.Google Scholar
  6. 6.
    Ma Peixue, Hou Quanlin, Mao Xueyinget al., Determination of ultratrace platinum-group elements in geological samples by neutron activation analysis,Rock and Mineral Analysis (in Chinese), 1995, 14(3): 208.Google Scholar
  7. 7.
    Hou Quanlin, Ma Peixue, Chai Zhifanget al., A new method for determination of osmium, platinum and palladium in geological samples by radiochemical neutron activation analysis,Journal of Basic Science and Engineering (in Chinese), 1996, 4 (3): 254.Google Scholar
  8. 8.
    Vandamme, D., Courtillot, V., Besse, al., Paleomagnetism and age determinations of the Deccan Traps (India): Results of a Nagpur-Bombay Traverse and review of earlier work,Rev. Geophys., 1991, 29: 159.CrossRefGoogle Scholar
  9. 9.
    Toutain, J-P., Meyer, G., Iridium-bearing sublimates at a hot-spot volcano (Picton de la Fournaise, Indian Ocean),Geopys. Res. Lett., 1989, 16: 1391.CrossRefGoogle Scholar
  10. 10.
    Finnegan, D. L., Miller, T. L., Zoller, W. H., Iridium and other trace-metal enrichments from Hawaiian volcanoes,Geol. Soc. Am. Spec. Pap., 1990, 247: 111.Google Scholar
  11. 11.
    Krahenbuhl, U., Geissbuhler, M., Buhler, al., Osmium isotopes in the aerosols of the mantle volcano Mauna Loa,Earth Planet. Sci. Lett., 1992, 110: 95.CrossRefGoogle Scholar
  12. 12.
    Koeberl, C., Iridium enrichment in volcanic dust from blue ice fields, Antarctica, and possible relevance to the K/T boundary event,Earth Planet. Sci. Lett., 1989, 92: 317.CrossRefGoogle Scholar
  13. 13.
    Hou Quanlin, Chai Zhifang, Ma Peixueet al., The behaviour of platinum-group elements (PGE) in ultramafic rock,Journal of Basic Science and Engineering (in Chinese), 1994, 2(2–3): 222.Google Scholar
  14. 14.
    Vannucci, S., Pancani, M.G., Vaselli, al., Mineralogical and geological features of the Cretaceous-Tertiary boundary day in the Brranco Del Gredero Section (Caravaca, SE-Spain),Chem. Erde, 1990, 50: 189.Google Scholar
  15. 15.
    Tredoux, M., de Wit, M.J., Hart, al., Platinum group elements in a 3.5 Ga Nickel-Iron occurrence: possible evidence of deep mantle origin,Jour. Geophys. Res., 1989, 94: 795.CrossRefGoogle Scholar
  16. 16.
    Strong, C. P., Brooks, R. R., Wilson, S. al., A new Cretaceous-Tertiary boundary site at Flaxbourne River, New Zealand: biostratigraphy and geochemistry,Geochim. Cosmochim. Acta, 1987, 51: 2769.CrossRefGoogle Scholar
  17. 17.
    Evans, N. J., Gregoire, D. C., Goodfellow, W. al., Ru/Ir ratios at the Cretaceous-Tertiary boundary: Implication for PGE source and fractionation within the ejecta cloud,Geochim. Cosmochim. Acta, 1993, 57: 3149.CrossRefGoogle Scholar
  18. 18.
    Evans, N. J., Gregoire, D. C., Grieve, R. A. al., Use of platinum-group elements for impactor identification: Terrestrial impact craters and Cretaceous-Tertiary boundary,Geochim. Cosmochim. Acta, 1993, 57: 3737.CrossRefGoogle Scholar
  19. 19.
    Ganapathy, R., A major meteorite impact on the earth 65 million years ago; evidence from the Cretaceous-Tertiary boundary clay,Science, 1980, 209: 921.PubMedCrossRefGoogle Scholar
  20. 20.
    Naldrett, A. J., Nickel sulphide deposits: Classification, composition and genesis,Econ. Geol., 1981, 75: 628.Google Scholar
  21. 21.
    Fomingkt, V. G., Kvostova, V. P., Platinum content of Ural dunites,Dokl. Akad. Nauk S. S. S. R., 1970, 191: 443.Google Scholar
  22. 22.
    Barnes, S-J., Giovenazzo, D., Platinum-group elements in the Bravo Instrusion, Cape Smith Fold Belt, Northern Quebec,Canadian Mineral., 1990, 28: 431.Google Scholar
  23. 23.
    Barnes, S-J., Boyd, R., Koneliussen, al., The use of mantle normalization and metal ratio in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group element, gold, nickel, and copper: Examples from Norway, inGeo-Platinum 87 (ed. H. M. Prichard), London: Elsevier, 1988: 113.Google Scholar
  24. 24.
    Naldrett, A.J., Duke, J.M., Pt metals in magmatic sulfide ores: the occurrence of these metals is discussed in relation to the formation and importance of these ores,Science, 1980, 208: 1417.PubMedCrossRefGoogle Scholar
  25. 25.
    Luck, J.-M., Turekian, K. K., Osmium-187/osmium-186 in manganese nodules and the Cretaceous-Tertiary boundary,Science, 1983, 222: 613.PubMedCrossRefGoogle Scholar
  26. 26.
    Allegre, C. J., Luck, J.-M., Osmium isotopes as petrogenetic and geological tracers,Earth Planet. Sci. Lett., 1980, 48: 148.CrossRefGoogle Scholar
  27. 27.
    Crocket, J. H., Kuo, H. Y., Sources of gold, palladium, and iridium in deep-sea sediments,Geochim. Cosmochim. Acta, 1979, 43: 831.CrossRefGoogle Scholar
  28. 28.
    Barnes, S-J., Naldrett, A.J., Gorten, M.P., The origin of the fractionation of platinum-group elements in terrestrial magmas,Chem. Geol., 1985, 53: 303.CrossRefGoogle Scholar
  29. 29.
    Hou Quanlin, Ma Peixue, The feasibility to distinguish tectonic settings using the platinum-group elements pattern, inProceedings of the 1995 Annual Conference of Tectonics in China (eds. Wu Zhengwen, Chai Yucheng), Beijing: Geological Publishing House, 1996, 156.Google Scholar
  30. 30.
    Sutherland, F. L., Volcanism around K/T boundary time —Its role in an impact scenaio for the K/T extinction events,Earth-Science Reviews, 1994, 36: 1.CrossRefGoogle Scholar
  31. 31.
    Kyte, F. T., Smit, J., Wasson, J.T., Siderophile interelement variations in the Cretaceous-Tertiary boundary sediments from Caravaca, Spain,Earth Planet. Sci. Lett., 1985, 73: 183.CrossRefGoogle Scholar
  32. 32.
    Andrew, C. J., The geological setting and style of mineralization at Ballyvergin, County Clare, inGeology and Genesis of Mineral Deposits in Ireland (eds. Andrew, C. J., Crewe, R. W. A.), Ireland, Geol. Survey, 1986, 475.Google Scholar
  33. 33.
    Van der Filier-Keller, E., Fyfe, W. S., Geochemistry of two Cretaceous coal-bearing sequences: James Bay lowlands, Northern Ontario, and Peace River basin, northeast British Columbia,Can. Jour. Earth Sci., 1987, 24: 1038.Google Scholar
  34. 34.
    Lin Wenzhu, Ouyang Ziyuan, Catastrophic environment of large-scale impact, inModern Nuclear Analysis Techniques and Its Application to Environmental Science (ed. Research Group of “ Modern Nuclear Analysis Techniques and Its Application in Environmental Science”) (in Chinese), Beijing: Atomic Energy Publishing House, 1994, 171–198.Google Scholar
  35. 35.
    Perch-Nielsen, K., McKenzie, J., He, Q., Biostratigraphy and isotopic stratigraphy and the “catastrophic” extinction of calcareous nannaplankton at the Cretaceous/Tertiary boundary,Geol. Soc. America Spec. Paper, 1982, 190: 353.Google Scholar
  36. 36.
    Ekdale, A.A., Bromley, R.G., Sedimentology and inchnology of the Cretaceous-Tertiary boundary in Denmark: implication for the causes of the terminal Cretaceous extinction,Jour. Sed. Petrol., 1984, 54: 681.Google Scholar
  37. 37.
    Thierstein, H. R., Terminal Cretaceous plankton extinctions: a critical assessment,Geol. Soc. America Spec. Paper, 1982, 190: 385.Google Scholar
  38. 38.
    Kucha, H., Platinum-group elements in the Zechstein copper deposits, Poland,Econ. Geol., 1982, 81: 1578.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Quanlin Hou
    • 1
  • Peixue Ma
    • 2
  • Xin Ju
    • 3
  1. 1.Laboratory of Lithosphere Tectonic Evolution, Institute of GeologyChinese Academy of SciencesBeijingChina
  2. 2.AMS Laboratory, Institute of Heavy Ion PhysicsPeking UniversityBeijingChina
  3. 3.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations