Bulletin of Alloy Phase Diagrams

, Volume 1, Issue 1, pp 27–33 | Cite as

The Al−Cu (Aluminum-Copper) system

  • T. B. Massalski
Provisional Al−Cu


Martensite Martensitic Transformation Alloy Phase Diagram Stacking Fault Probability Pearlite Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References (crystal structure)

  1. 1.
    T. B. Massalshi and H. W. King, Alloy Phases of the Noble Metals,Prog. Mat. Sci., 10, p 1–78 (1963)Google Scholar

Cited References (Massalski)

  1. 2.
    W. C. Giessen, Ed.,Developments in the Structural Chemistry of Alloy Phases, p 234, Plenum, New York (1969).Google Scholar
  2. 3.
    E. Hornbogen, The Electron Microscope Investigation of Precipitation in Aluminium-Copper Solid Solutions. III,Aluminum, 43, p 163–166 (1967) in German.Google Scholar
  3. 4.
    E. Hornbogen, The Electron Microscope Investigation of Precipitation in Aluminium-Copper Solid Solutions. II,Aluminium, 43, p 115–121 (1967) in German.Google Scholar
  4. 5.
    H. Warlimont and L. Delaey, Martensitic Transformations in Copper-Silver-and Gold-Based Alloys,Prog. Mat. Sci., 18, p 1–154 (1974).CrossRefGoogle Scholar
  5. 6.
    P. R. Swann and H. Warlimont, The Electron-Metallography and Crystallography of Copper-Alumium Martensites,Acta Met., 11, p 511–527 (1963).CrossRefGoogle Scholar
  6. 7.
    J. J. Regidor, G. Caruana and M. C. Cristina, Phases in Cupro-Al and Their Metallographic Examination,ATEF Colada., 7, p 255–234 (1974) in Spanish.Google Scholar
  7. 8.
    D. L. Thomas, Metastable Systems Involving β and β1 Phases in Copper-Aluminium Alloys,J. Inst. Metals, 94, p 250–254 (1966).Google Scholar
  8. 9.
    J. Jellison and E. P. Klier, The Cooling Transformations in the Beta Eutectoid Alloys of the Cu−Al System,Trans. Met. Soc. AIME, 233, p 1694–1702, (1965).Google Scholar
  9. 10.
    J. R. Moon and R. O. Garwood,J. Inst. Metals, 96, p 17 (1968).Google Scholar

Additional References

  1. 11.
    O. S. Bochvar and V. S. Pokhodaev, The Solubility of Copper and Cadmium in Aluminum, in M. E. Drits, Ed.,Metallovedenie Legkikh Splavov, p 88–92, Izd. Nauka, Moscow (1965) in Russian.Google Scholar
  2. 12.
    A. J. Bradley, The Deformed Lattices of the Copper-Aluminum Alloys (review),Mineral. Petrog. Mitt., 10, p 192–202 (1965).ADSGoogle Scholar
  3. 13.
    Z. Nishiyama, J. Kakinoki and S. Kajiwara, Stacking Faults in the Martensite of Cu−Al Alloy,J. Phys. Soc. Jpn., 20, p 1192 (1965). (Electron diffraction patterns.)CrossRefADSGoogle Scholar
  4. 14.
    H. Warlimont, Microstructure, Crystal Structure, and Mechanical Properties of Martensite Phases in Copper Alloys,Iron and Steel Inst. (London), Special Report No. 93, p 58–67; discussion, p 68–75 (1965).Google Scholar
  5. 15.
    S. Westman, Refinement of the Gamma-Cu9Al4 Structure,Acta Chem. Srand., 19, p 1411–1419 (1965).CrossRefGoogle Scholar
  6. 16.
    S. Westman, Phase Analysis at 660°C of the Gamma Region of the Copper-Aluminum System,Acta Chem. Scand., 19, p 2369–2372 (1965).CrossRefGoogle Scholar
  7. 17.
    S. Murai, T. Haga and S. Hirayama, Experimental Observation of the Intermediate μ-phase in Cu−Al β Alloys,Nippon Kinzoku Gakkaishi, 30, p 1092–1098 (1966) in Japanese. (The phase formed by a peritectoid reaction around 77 at.% Cu has been variously identified as μ, γ [Hansen, Shunk, Metals Handbook], α2 [Hultgren] or X [Landolt-Börnstein].)Google Scholar
  8. 18.
    C. Laird and H. I. Aaronson, Mechanisms of Formation of θ and Dissolution of θ′ Precipitates in anAl-4% Cu Alloy,Acta Met., 14, p 171–185 (1966).CrossRefGoogle Scholar
  9. 19.
    S. Kajiwara, Stacking Fault Probabilities in Copper-Aluminum Martensite Transformed in Thin Foils,J. Phys. Soc. Jpn., 22(3), p 795 (1967).CrossRefADSGoogle Scholar
  10. 20.
    H. Sato, R. S. Toth and G. Honjo, Remarks on the Structure of Martensites in Cu−Al Alloys,Acta. Met., 15, p 1381–1396 (1967).CrossRefGoogle Scholar
  11. 21.
    V. D. Melikov, T. B. Begimov, A. G. Malyavka and A. A. Presnyakov, Structure of Solid Solutions based on Electronic Compounds of the γ-Brass Type, inVoprosy Obshchei i Prikladnoi Fiziki (Proc. Conf., 1st, 1967), p 54–56,Izd. Nauka Kaz. SSR, Alma-Ata USSR (1969).Google Scholar
  12. 22.
    T. B. Begimov, V. D. Melikov, A. A. Presnyakov and E. M. Baigulov, tructure of the γ-Region of the Copper-Aluminum System at Room Temperature,Primen. Fiz. Mekh. Anal. Issled. Mater., p 12–16 (1968).Google Scholar
  13. 23.
    J. Brettschneider and H. Warlimont, Phase Equilibrium and Transformations in Cu−Al Alloys under High Hydrostatic Pressure,Z. Metallkunde, 59, p 740–749 (1968).Google Scholar
  14. 24.
    P. Duval and P. Haymann, Structure of a New Ordered Phase Obtained by Annealing β′-Martensite from Copper-Aluminum Alloys,C. R. Acad. Sci. Paris, 267B, p 388–391 (1968).Google Scholar
  15. 25.
    O. von Heidenstam, A. Johansson and S. Westman, A Redetermination of the Distribution of Atoms in Cu5Zn8, Cu5Cd8 and Cu9Al4,Acta Chem. Scand., 22, p 653–661 (1968).CrossRefGoogle Scholar
  16. 26.
    S. D. Kulkarni, Thermodynamics of Martensitic and Eutectoid Transformations in the Cu−Al System,Acta Met., 21(10), p 1461–1469 (1973).CrossRefGoogle Scholar
  17. 27.
    S. D. Kulkarni, Mechanism and Kinetics of Eutectoid Reaction in Cu−Al System,Acta Met., 21(11), p 1539–1546 (1973). (Model for pearlite growth.)CrossRefGoogle Scholar
  18. 28.
    R. Bonnet and F. Durand, Geometric Discussion of the Relationships Between the Phases Al and CuAl2 for the Eutectic and Precipitates of CuAl2, Proc. Conf. In Situ Composites. I. Solidification and Resulting Structure, p 209–223 (1973).Google Scholar
  19. 29.
    R. H. Hopkins, Three-Dimensional Morphology of a Lamellar Spacing Perturbation in an Al−Cu Eutectic Alloy, Proc. Conf. In Situ Composites. I. Solidification and Resulting Structure, p 181–191 (1973).Google Scholar
  20. 30.
    H. Warlimont and H. P. Aubauer, Disperse Order—A Model for the Partially Ordered State of Concentrated-Alloy Solid Solutions. I. Experimental Observations and Basic Features of the Model,Z. Metallkunde, 64(7), p 484–491 (1973) in German. (Short range ordered solid solution.)Google Scholar
  21. 31.
    P. Furrer and H. Warlimont, Phase Transformations in Beta-Cu−Al on Extremely Rapid Cooling from the Melt,Z. Metallkunde, 64(9), p 626–634 (1973) in German. (17.0–20.3 at.% Al, Solidification complies with equilibrium diagram.)Google Scholar
  22. 32.
    R. Sankaran, Kinetics of Growth of Platelike Precipitates,Acta Met., 22(8), p 957–969 (1974).CrossRefGoogle Scholar
  23. 33.
    Yu. M. Vainblat and P.Sh. Lantsman, Diagrams of Structural States for Hot-Worked Al Alloys,Izvest. VUZ Tsvetnaya Met., 4, p 155–160 (1974) in Russian.Google Scholar
  24. 34.
    T. V. Shchegoleva, Features of the Rearrangement of a Face-Centered Cubic Lattice to Those of the Al2Cu and MgZn2 Types,Phys. Met. Metallogr., 41, p 92–97 (1976) in Russian. (Transformation mechanism.)Google Scholar
  25. 35.
    H. Laplanche, Analogies Between Steels and Copper-Aluminium Alloys,Mat. Tech., 64(10), p 351–355 (1976) in French.Google Scholar
  26. 36.
    H. Laplanche, Analogies Between Steels and Cu−Al Alloys,Mat. Tech., 64(12), p 429–434 (1976) in French.Google Scholar
  27. 37.
    H. Laplanche, Analogies Between Steels and Cu−Al Alloys. III,Mat. Tech., 65(1–2), p 61–65 (1977) in French. (TTT curves.)Google Scholar
  28. 38.
    H. Laplanche, Analogies Between Steels and Cu−Al Alloys. IV,Mat. Tech., 65(5), p 243–248 (1977) in French. (Formation of martensite.)Google Scholar
  29. 39.
    N. Kuwano, I. Ogata, Y. Tomokiyo and T. Eguchi, Formation Process of Alpha 2-Phase in Cu−Al Alloys,Trans. Jpn. Inst. Met., 18(3), p 195–203 (1977).Google Scholar
  30. 40.
    W. Gust, B. Predel and K.-J. Stenzel Calorimetric Studies to Determine the Specific Boundary Surface Enthalpy of the Phase Boundaries of the Eutectoid Composition Alloys Cu−24.0 At% Al and Cu−20.15 At% In,Acta Met., 27(1), p 117–121 (1979) in German.CrossRefGoogle Scholar
  31. 41.
    S. Kiss, I.Z. Harangozo and F.J. Kedves, Solubility Study of Cu in Al Using Zener Relaxation,Phys. Stat. Solidi (a), 33(2), p K107-K109 (1976). (0–5 at.%Cu.) See Fig. 7.CrossRefGoogle Scholar
  32. 42.
    T. Kojima, K. Kuribayashi and M. Doyama, Studies of Martensitic Transformation in Cu−Al Alloys by Positron Annihilation,Appl. Phys., 12(2), p 179–181 (1977).CrossRefADSGoogle Scholar
  33. 43.
    H. Goldenstein and I.G.S. Falleiros, Transformation Reactions During Tempering of Beta Prime Martensite in Cu−Al, XXXII Congresso Anual da Assoc. Brasileira de Metais, Sao Paulo, 14 p (1977) in Portuguese.Google Scholar
  34. 44.
    F. dHeurle, Deposition by Evaporation of Cu−Al Alloy Films,Vacuum, 27(4), p 321–327 (1977).CrossRefGoogle Scholar
  35. 45.
    E. Schürmann and H. Löblich, Phase Boundaries and Interlamellar Spacing in Solidification of the Eutectic System Al−CuAl2,Metall., 31, p 610–614 (1977) in German. See Fig. 8a and 8b.Google Scholar
  36. 46.
    L. Arnberg and S. Westman, Crystal Perfection in a Non-Centrosymmetric Alloy: Refinement and Test of Twinning of the γ-Cu9Al4 Structure,Acta Crystallogr., 34a, p 399–404 (1978).ADSGoogle Scholar

Copyright information

© Springer 1980

Authors and Affiliations

  • T. B. Massalski
    • 1
  1. 1.Carnegie Mellon UniversityPittsburg

Personalised recommendations