Skip to main content
Log in

Relationship between histone acetylation/deacetylation and gene transcription

  • Special Topic
  • Published:
Chinese Science Bulletin

Abstract

In eukaryotes, nucleosome is the basic unit of chromatin. Nucleosorne is composed of an octamer of histone proteins (two molecules each of histones H2A, H2B, H3 and H4) and DNA strand wound around the octamer. Some data show that core histone octamer can affect gene transcription bothin vitro andin vivo. Recent results indicate that histone acetylation/deacetylation is a key step to regulate activity of genes. This article summarizes some coactivators, such as GCNSp, P300/CBP and TAFII 250, which are recently found to have histone acetyltransferase activity. The relationship between these coactivators and gene activation is also described. Besides, this article concerns some corepressors which have histone deacetylase activity, such as Rpd3p, HDAC2. These corepressors combine with other protein complex and then repress transcription. Finally, some problems to be solved and the future direction in this active field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Workman, J. L., Roeder, R. G., Binding of transcription factor TFII D to the major late promoter duringin vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II,Cell, 1987, 51: 613.

    Article  PubMed  CAS  Google Scholar 

  2. Meisteremst, M., Horikoshi, M., Roeder, R. G., Recombinant yeast TFIID, a general transcription factor, mediates activation by the gene-specific factor USF in a chromatin assembly assay,Proc. Natl. Acad. Sci. USA, 1990, 87: 9135.

    Google Scholar 

  3. Godde, J. S., Nakatani, Y., Wolffe, A. P., The amino-terminal tails of the core histories and the translational position of the TATA box determine TBP/TFIIA association with nucleosomal DNA,Nucleic Acids Res., 1995, 23: 4557.

    Article  PubMed  CAS  Google Scholar 

  4. Turner, B. M., Girley, A. J., Lavender, J., Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei.Cell, 1992, 69; 375.

    Article  PubMed  CAS  Google Scholar 

  5. Hebbes, T. R., Clayton, A. I., Thome, A. W.et al., Core histone hyperacetylation co-maps with generalized DNasel sensitivity in the chicken ß-globin chromosomal domain,EMBO J., 1994, 13: 1823.

    PubMed  CAS  Google Scholar 

  6. Braunstein, M., Rose, A. V., Holmes, S. G.et al., Transcriptional silencing in yeast is associated with reduced nucleosome acetylation,Genes Dev., 1993, 7: 592.

    Article  PubMed  CAS  Google Scholar 

  7. Garcia-Ramirez, M., Rocchine, C., Ausio, J., Modulation of chromatin folding by histone acetylation,J. Biol. Chem., 1995, 270: 17923.

    Article  PubMed  CAS  Google Scholar 

  8. Macus, G. A., Silverman, N., Berger, S. L.et al., Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors,EMBO J., 1994, 13: 4807.

    Google Scholar 

  9. Brownell, J. E., Zhou, J., Ranalli, T.et al., Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation.Cell, 1996, 84: 843.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, X. J., Ogryzko, V. V., Nishikawa, J.et al., A p300/CBP-associated factor that competes with the adenoiral oncoprotein E1A,Nature, 1996, 382: 319.

    Article  PubMed  CAS  Google Scholar 

  11. Ogryazko, V. V., Schlitz, R. L., Russanova, V.et al., The transcriptional coactivators p300 and CBP are histone acetyltransferases,Cell, 1996, 87: 953.

    Article  Google Scholar 

  12. Bannister, A. J., Kouzarides, T., The CBP co-activator is a histone acetyltransferase,Nature, 1996, 384: 641.

    Article  PubMed  CAS  Google Scholar 

  13. Janknecht, R., Hunter, T., A growing coactivator network,Nature, 1996, 383: 22.

    Article  PubMed  CAS  Google Scholar 

  14. Mizzen, C. A., Yang, X. J., Kokubo, T.et al., The TAFII 250 subunit of TFIID has histone acetyltransferase activity,Cell, 1996, 87: 1261.

    Article  PubMed  CAS  Google Scholar 

  15. Ptashne, M., Gann, A., Transcriptional activation by recruitment,Nature, 1997, 386: 569.

    Article  PubMed  CAS  Google Scholar 

  16. Barberis, A., Pearlberg, J., Simkovich, N.et al., Contact with a component of the polymerase II holoenzyme suffices for gene activation.Cell, 1995, 81: 359.

    Article  PubMed  CAS  Google Scholar 

  17. Gaudreau, L., Schmid, A., Blaschke, D.et al., RNA polymerase II holoenzyme recruitment is sufficient to remodel chromatin at the yeast PHO5 promoter,Cell, 1997, 89: 55.

    Article  PubMed  CAS  Google Scholar 

  18. Roth, S. Y., Allis, C. D., The subunit-exchange model of histone acetylation,Trends Cell Biol., 1996, 6: 371.

    Article  PubMed  CAS  Google Scholar 

  19. Segil, N., Guermah, M., Hoffmann, A.et al., Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization,Gene Dev., 1996, 10: 2389.

    Article  PubMed  CAS  Google Scholar 

  20. Vidal, M., Faber, R. F., Rpd3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyes cerevisiae,Mol. Cell. Biol., 1991, 11: 6317.

    PubMed  CAS  Google Scholar 

  21. Stillman, D. J., Dorland, S., Yu, Y., Epistatic analysis of suppressor mutations that allow HO expression in the absence of the yeast SWI5 transcriptional activator,Genetics, 1994, 136: 781.

    PubMed  CAS  Google Scholar 

  22. Taunton, J., Hassig, C. A., Schreiber, S. L., A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p,Science, 1996, 272: 408.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, W. M., Inouye, C., Zeng, Y.et al., Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3,Proc. Natl. Acad. Sci. USA, 1996, 93: 12845.

    Article  PubMed  CAS  Google Scholar 

  24. Wane, H., Clark, I., Nicholson, P. R.et al., The S. Cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helical motifs.Mol. Cell. Biol., 1990, 10: 5927.

    Google Scholar 

  25. Kadosh, D., Struhl, K., Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 hietone deacetylase to target promoters,Cell. 1997, 89: 365.

    Article  PubMed  CAS  Google Scholar 

  26. Ayer, D. E., Kretmer, L., Eisenman, R. N., Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sim3,Cell. 1995, 80: 767.

    Article  PubMed  CAS  Google Scholar 

  27. Schreiber-Agus, N., Chin, L., Chen, K.et al., An mineterminal domain of Mxil mediites anti-Myc onmgenic activity and interacts with a homolcg of the yeast transcriptional repressor SIN3,Cell, 1995, 80: 777.

    Article  PubMed  CAS  Google Scholar 

  28. Heiel, T., Lavinsky, R. M., Mullen, T. M.et al., A complex containing N-CoR, did and histone deacetylase mediates transcriptional repression,Nature, 1997, 387: 43.

    Article  Google Scholar 

  29. Alland, L., Muhle, R., Jr, H. H.et al., Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression.Nature. 1997. 387: 49.

    Article  PubMed  CAS  Google Scholar 

  30. Ha, C. A., Fleischer, T. C., Billin, A. W.et al., Histone deacetylase activity is required for full transcriptional repression by mSidA,Cell. 1997, 89: 341.

    Article  Google Scholar 

  31. Laherty, C. D., Yang, W. M., Sun, J. M.et al., Histone deacetylases associated with the mSin3 corepressor mediite Mad transcriptional repression,Cell. 1997, 89: 349.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang, Y., Iratni, R., Erdjument-Bromage, H.et al., Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex,Cell. 1997, 89: 357.

    Article  PubMed  CAS  Google Scholar 

  33. Nagy, L., Kao, H. Y., Chakravarti, D.et al., Nuclear receptor repression mediated by a complex containing SMRT. mSin3A. and hietone deacetylase.Cell, 1997, 89: 373.

    Article  PubMed  CAS  Google Scholar 

  34. De Rubatis, F., Kadosh, D., Henchoz, S., The hiitone deacetyh RPD3 counteracts genomic silencing in Drosophila and yeast,Nature, 1996. 384: 589.

    Article  Google Scholar 

  35. Gu, W., Shi, X. L., Roeder, R. G., Synergistic activation of transcription by W and p53,Nature, 1997, 387: 819.

    Article  PubMed  CAS  Google Scholar 

  36. Lill, N. L., Grossman, S. R., Ginsberg, D.et al., Binding and modulation of p53 by P300/CBP coactivators,Nature, 1997, 387: 823.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lu, Z., Wang, Y. Relationship between histone acetylation/deacetylation and gene transcription. Chin.Sci.Bull. 43, 1057–1063 (1998). https://doi.org/10.1007/BF02883072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02883072

Keywords

Navigation