Advertisement

Science in China Series C: Life Sciences

, Volume 41, Issue 1, pp 9–17 | Cite as

Isolation, properties and spatial site analysis of γ subunits of B-phycoerythrin and R-phycoerythrin

  • Guangce Wang
  • Baicheng Zhou
  • Chengkui Zeng
Article

Abstract

Polysiphonia urceolata R-phycoerythrin andPorphyridium cruentum B-phycoerythrin were degraded with proteinaseK, and then the nearly native γ subunits were isolated from the reaction mixture. The process of degradation of phycocrythrin with proteinaseK showed that the γ subunit is located in the central cavity of (αβ)6 hexamer of phycoerythrin. Comparative analysis of the spectra of the native phycoerythrin, the phycoerythrin at pH 12 and the isolated γ subunit showed that the absorption peaks of phycoerythrobilins on α or β subunit are at 535 nm (or 545 nm) and 565 nm, the fluorescence emission maximum at 580 nm; the absorption peak of phycoerythrobilins on the isolated γ subunit is at 589 nm, the fluorescence emission peak at 620 nm which overlaps the absorption maximum of C-phycocyanin and perhaps contributes to the energy transfer with high efficiency between phycoerythrin and phycocyanin in phycobilisome; the absorption maximum of phycourobilin on the isolated γ subunit is at 498 nm, which is the same as that in native phycoerythrin, and the fluorescence emission maximum at 575 nm.

Keywords

B-phycoerythrin R-phycoerythrin γ subunit spectroscopic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou, B, C., Zeng, C. K., Studies on translated names of photosynthetica pigment of algae,Plant Physiology Communica-tion (in Chinese), 1996, (3): 57.Google Scholar
  2. 2.
    Glszer, A. N., Light harvesting by phycobilisome,Ann. Rev. Biophys, Biophys. Chem., 1985, (14):47.Google Scholar
  3. 3.
    Schirmer, T., Bode, W., Huber, R., X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacteriaMastigocladus laminosun and its resemblance to globin structures,J. Mol. Biol., 1985, (184):257.Google Scholar
  4. 4.
    Schirmer, T., Huber, R., Schneider, M. et al., Crystal structure analysis and refinement at 2.5 Å of hexameric C-phyco-cyanin from the cyanobacteriumAgmenellum quadruplicacum—The molecular model and its implications for light-harvesting,J. Mol., Biot., 1986, (188):651.Google Scholar
  5. 5.
    Schirmer, T., Bode, W., Huber, R., Refined three-dimensional structures of two cyanobacterial C-phycocyanin at 2.1 and 2.5 Å resolution—A common principle of phycobiliprotein interaction,J. Mol. Biol., 1987, (196): 677.Google Scholar
  6. 6.
    Duerring, M., Schmidt, G. B., Huber, R., Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacteriumFremyella diplosiphon at 1.66 Å resolution,J. Mol. Biol., 1991, (217):577.Google Scholar
  7. 7.
    Duerring, M., Huber, R., Bode, W., Refined three-dimensional structure of phycoerythrocyanin from the cyanobacteriumMastigocladus laminosus at 2.7 Å, J.,Mot. Biol., 1990, (211):633.Google Scholar
  8. 8.
    Ficner, R., Lobect, K., Schmidt, G. et al., Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red algaPorphyridium cruentum at 2.2 Å resolution,J. Mot. Biol., 1992, (229):935.Google Scholar
  9. 9.
    Chang, W.R., Wan, Z.L., Song, H.W. et al.,Science in China (inChinese), Ser. B, 1995, 25(1): 49.Google Scholar
  10. 10.
    Glazer, A. N., Hixson, C. S., Subunit structure and chromophore composition of Rhodophytan phycoerythrins,J. Biol. Chem., 1977, 252(1):32.PubMedGoogle Scholar
  11. 11.
    Yu, L. H., Zeng, F. J., Jiang, L. J. et al., Subunit composition and chromophore content of R-phycoerythrin from the red alga (Polysighonia urceolata Grev),Chin. J. Biochem. Biophys. (in Chinese), 1990, 22(3): 221.Google Scholar
  12. 12.
    Provasoli, I., McIanghlin, J. J. A., Droop, M. R., The development of artificial media for marine algae,Arch. Mikrobiol., 1957, 25:392.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, G. C., Zhou, B. C., Zeng, C. K., Purification of C-phycocyanin fromSpirulina platensis and R-phycoerythrin fromPolysiphvnia arceolata and determination of their molar extinction coefficient.Marine Sciences (in Chinese), 1996, (1): 52.Google Scholar
  14. 14.
    Glazer, A. N., Photosynthetic accessory proteins with bilin prosthetic groups, inThe Biochemistry of Plant Photosynthesis (eds. Hatch, M. D., Boardman, N. K.), Vol.8, New York: Academic Press, Inc., 1981, 51–92.Google Scholar
  15. 15.
    Gantt, E., Lipschutz, C. A., Phycobilisomes ofPorphyridium cruentum: Pigment analysis, 1974, 13(14): 2960.Google Scholar
  16. 16.
    Rowan, K. S.,Photosynthetic Pigments of Algae, Cambridge, NewYork: Cambridge University Press, 1989, 166–189.Google Scholar
  17. 17.
    Ebeling, W., Hennrich, N., Klockow, M. et al., ProteinaseK fromTritirachium album limber, Ear,J. Biochem., 1974, 47:91.Google Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Guangce Wang
    • 1
  • Baicheng Zhou
    • 1
  • Chengkui Zeng
    • 1
  1. 1.Experimental Marine Biology Laboratory, Institute of OceanologyChinese Academy of SciencesQingdaoChina

Personalised recommendations