Advertisement

Chinese Science Bulletin

, Volume 42, Issue 3, pp 192–196 | Cite as

Structural and microstructural transformations in Bi2Sr2Ca1 −xYxCu2O8 + y system

  • Chengyu Song
  • Shulin Wen
  • Guangcan Che
Bulletin

Conclusions

With the substitution of Y for Ca in BSCYCO system, both the hole concentration and structure parameters change. The superconductor-nonsuperconductor transition at xc = 0.4 is more sensitive to the structure transformation than the variation in the hole concentration.

Microanalysis reveals an inhomogeneous substitution of Y for Ca. So a much sharper drop of T, is expected at transition point by ideal monophase samples of BSCYCO.

A ratio of lattice constants c / o. 5 (a + b) is found to be a very good parameter of describing the SC-AF transition of ISCYCO, reflecting the degree of the localization of Cu-3d electrons on the CuOz plane.

Keywords

Bi2Sr2Ca1 -xYxCu2Oy substitution structural transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fujita, T., Aoki, Y., Maeno, Y.et al., Jpn. J. Appl. Phys. 1987, 26: L368.CrossRefGoogle Scholar
  2. 2.
    Kumagai, K., Watanabe, I., Aoki, H.et al., Physica, Ser. B, 1987, 148: 480.Google Scholar
  3. 3.
    Nishida, N.J. Phys. Soc. Jpn. 1988, 57: 597.CrossRefGoogle Scholar
  4. 4.
    Tranquada, J. M.,Phys. Rev. Lett. 1988, 60: 156.PubMedCrossRefGoogle Scholar
  5. 5.
    Fukushima, N., Niu, H., Ando, K.,Jpn. J. Appl. Phys., 1988, 27: L790.CrossRefGoogle Scholar
  6. 6.
    Kimishima, Y., Kittaka, H.,Physica. Ser. C, 1989, 160: 136.CrossRefGoogle Scholar
  7. 7.
    Fukushima, N., Niu, H., Ando, K.,Jpn. J. Appl. Phys., 1988, 27: L1432.CrossRefGoogle Scholar
  8. 8.
    Tamegai, T., Koga, K., Suzuki, K.et al., Jpn. J. Appl. Phys., 1989, 28: L112.CrossRefGoogle Scholar
  9. 9.
    Groen, W. A., de Leeuw, D. M., Feiner, L. F.,Physic., 1990, 165: 55.Google Scholar
  10. 10.
    Groen, W. A., de Leeuw, D. M., Geelen, G. P. J.,Physic., 1990, 165: 305.Google Scholar
  11. 11.
    Fuggle, J. C., Sawatzk, G. A., Allen, J. W.,Narrow Band Phenomena, New York: Plenum Press, 1988.Google Scholar
  12. 12.
    Micnas, R., Ranninge, J., Robaszkiewicz, S.,Rev. Mod. Phys., 1990, 6: 113.CrossRefGoogle Scholar
  13. 13.
    Eveas, R. C.,An Introduction to Crystal Chemistry, Cambridge: The Cambridge University Press, 1952.Google Scholar
  14. 14.
    Nishida, N., Okuma, S., Miyatake, H.et al., Physica, Ser. C, 1990, 168: 23.CrossRefGoogle Scholar
  15. 15.
    Takabatake, T., Ye, W., Orimo, S.,et al., Physica, Ser. C, 1989, 157: 263.CrossRefGoogle Scholar
  16. 16.
    Tajima, Y., Hikita, M., Suzuke, M.,Physic, Ser. C, 1989, 15: 237.CrossRefGoogle Scholar
  17. 17.
    Fujikami, J., Yoshizaki, R., Akamatsu, M.,Physica, Ser. C, 1991, 174: 359.CrossRefGoogle Scholar
  18. 18.
    Shannon, R. D., Rewitt, C. T.,Acta Cryst., Ser. B, 1969, 25: 925.CrossRefGoogle Scholar
  19. 19.
    Goodenough, J. B., Manthiram, A.,Physica, Ser. C, 1989, 157: 439.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1997

Authors and Affiliations

  • Chengyu Song
    • 1
  • Shulin Wen
    • 1
  • Guangcan Che
    • 2
  1. 1.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.State Key Laboratory of Superconductivity, Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations