Science in China Series A: Mathematics

, Volume 41, Issue 12, pp 1302–1308 | Cite as

Instability analysis for Faraday waves under arbitrarily periodic vibration

  • Weizhong Chen
  • Rongjue Wei


In the framework of linear theory of instability the pattern instability is studied for a layer of a viscous fluid in a large aspect ratio container subject to vertically arbitrarily periodic excitation. As some applications, first the instabilities for Faraday water-wave system under excitations of the triangle and square waves are analyzed. Then, the relations between relative amplitudes and phase of the excitation, and the response modes of the patterns are investigated in the double-frequency Faraday experiment. The results are satisfactory.


Faraday wave instability harmornic subharmornic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miles, J., On Faraday waves,J. Fluid Mech., 1993, 248: 671.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Wu Junru,Observation of a non-propagating hydrodynamic soliton,Phys. Rev. Lett., 1984, 52: 1421.CrossRefGoogle Scholar
  3. 3.
    Chen Weizhong, Wei Rongjue, Wang Benren, Parametrically excited internal wave breathers and kinds in liquids,Science in China, Ser. A, 1996, 39: 309.Google Scholar
  4. 4.
    Chen Weizhong, Wei Rongjue, Wang Benren, Chaos in nonpropagating hydrodynamical breathers,Phys. Rev., Ser. E, 1996, 53: 6016.CrossRefGoogle Scholar
  5. 5.
    Christiansen, B., Alstrom, P., Levinsen, M.T., Ordered capillary-wave states: quasicrystals, hexagons, and radial waves,Phys. Rev. Lett., 1992, 68: 2157.CrossRefGoogle Scholar
  6. 6.
    Edwards, W. S., Fauve, S., Patterns and quasi-patterns in the Faraday experiment,J. Fluid Mech., 1994, 278: 123.CrossRefMathSciNetGoogle Scholar
  7. 7.
    ZhangWenbin, Vinals, J., Second instabilities and spatiotemporal chaos in parametric surface waves,Phys. Rev. Lett., 1995, 74: 690.CrossRefGoogle Scholar
  8. 8.
    Kudrolli, A., Gollub, J.P., Localized spatiotemporal chaos in surface waves,Phys. Rev., Ser. E, 1996, 54: R1052.CrossRefGoogle Scholar
  9. 9.
    Kumar, K., Linear theory of Faraday instability in viscous liquids,Proc. R. Soc. Lond., Ser. A, 1996, 452: 1113.MATHCrossRefGoogle Scholar
  10. 10.
    Müller, H. W., Analytic stability theory for Faraday waves and the observation of the harmonic surface response,Phys. Rev. Lett., 1997, 78: 2357.CrossRefGoogle Scholar
  11. 11.
    Müller, H.W., Periodic triangular patterns in Faraday experiment,Phys. Rev. Lett., 1993, 71: 3287.CrossRefGoogle Scholar
  12. 12.
    Cerda, E., Tirapegui, E., Faraday’s instability for viscous fluids,Phys. Rev. Lett., 1997, 78: 859.CrossRefGoogle Scholar

Copyright information

© Science in China Press 1998

Authors and Affiliations

  • Weizhong Chen
    • 1
  • Rongjue Wei
    • 1
  1. 1.Institute of Acoustics and State Key Laboratory of Modern AcousticsNanjing UniversityNanjingChina

Personalised recommendations