Effect of non-strained capping layer on excess stress in strained layers

  • Zhi Jin
  • Shuren Yang
  • Chunsheng Ma
  • Haiyan An
  • Benzhong Wang
  • Shiyong Liu


The effects of the capping-layer thickness and the discrepancy of the numbers of misfit dislocations at the upper and lower interfaces in capped layer on the excess stress are considered. Based on this, the formulae of excess stresses for single-and double-kink models are modified and a new formula is derived, which unifies single- and doublekink models and is valid for arbitrary capping-layer thickness. It is useful to complete the description of the formation and motion of misfit dislocations in strained layers.


non-strained capping-layer excess stress mechanism of the mixture of the dislocations 


  1. 1.
    Van der Merwe, J. H., Crystal interfaces, Part II. Finite overgrowths,J. Appl. Phys., 1963, 34: 123.CrossRefGoogle Scholar
  2. 2.
    Matthews, J. W., Blakeslee, A. E., Deffects in epitaxial multilayers,J. Cryst. Growth, 1974, 27: 118.Google Scholar
  3. 3.
    People, R., Bean, J. C., Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer het-erostructures,Appl. Phys. Lett., 1985, 47: 322.CrossRefGoogle Scholar
  4. 4.
    Fritz, I. J., Gourley, P. L., Dawson, L. R., Critical layer thickness in In0.2 Ga0.8As/GaAs single strained quantum well structures,Appl. Phys. Lett., 1987, 51: 1004.CrossRefGoogle Scholar
  5. 5.
    Gendry, M., Drouot, V., Hollinger, G. et al., Effect of surface steps and nonstoichiometry on critical thickness of strained InGaAs layers grown by molecular beam epitaxy on InAlAs/InP heterostructures,Appl. Phys. Lett., 1995, 66: 40.CrossRefGoogle Scholar
  6. 6.
    Taguchi, T., Takeuchi, Y., Matugatani, K. et al. Critical layer thickness of 1n0.80 Ga0.20As/In0.52Al0.48 As heterostructures,J. Crystal. Growth, 1993, 134: 147.CrossRefGoogle Scholar
  7. 7.
    Dodson, B. W., Tsao, J. Y., Relaxation of strained-layer semiconductor structures via plastic flow,Appl. Phys. Lett., 1987, 51: 1325.CrossRefGoogle Scholar
  8. 8.
    Tsao, J. Y., Dodson, B. W., Picraux, S. T. et al., Critical stresses for SixGe1−x strained-layer plasticity,Phys. Rev. Lett., 1987, 59: 2455.CrossRefGoogle Scholar
  9. 9.
    Tsao, J. Y., Dodson, B.W., Excess stress and the stability of strained heterostructures,Appl. Phys. Lett., 1988, 53: 848.CrossRefGoogle Scholar
  10. 10.
    Dodson, B.W., Tsao, J. Y., Structural relaxation in metastable strained-layer semiconductors,Annu. Rev. Mater. Sci., 1989, 19: 419.CrossRefGoogle Scholar
  11. 11.
    Houghton, D. C., Strain relaxation kinetics in Si1−xGex/Si heterostructures,J. Appl. Phys., 1991, 70: 2136.CrossRefGoogle Scholar
  12. 12.
    Houghton, D. C., Misfit dislocation dynamica in Si1−xGex/(100)Si: uncapped alloy layers, buried strained layers, and multiple quantum wells,Appl. Phys. Lett., 1990, 57: 1434.CrossRefGoogle Scholar
  13. 13.
    Houghton, D., Davies, M., Dion, M., Design criteria for structurally stable, highly strained multiple quantum well devices,Appl. Phys. Lett., 1994, 64: 505.CrossRefGoogle Scholar
  14. 14.
    Hull, R., Bean, J., Thermal stability of Si/Gex,Si1−x/Si heterostructures,Appl. Phys. Lett., 1989, 55: 1900.CrossRefGoogle Scholar
  15. 15.
    Hirth, J. P., Lothe, J.,Theory of Dislocations, New York: McGraw-Hill, 1985.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Zhi Jin
    • 1
  • Shuren Yang
    • 1
  • Chunsheng Ma
    • 1
  • Haiyan An
    • 1
  • Benzhong Wang
    • 1
  • Shiyong Liu
    • 1
  1. 1.State Key Laboratory of Integrated Optoelectronics, Department of Electrical EngineeringJilin UniversityChangchunChina

Personalised recommendations