Science in China Series B: Chemistry

, Volume 40, Issue 1, pp 37–44 | Cite as

Response mechanism of platinum electrode to uncoupled ions(I)

—Response of platinum electrode to pb2+, cd2+, ca2+ and Mg2+
  • Shenghua Shi
  • Shuping Yu
  • Peng Liu


The transient response mechanism of the platinum electrode to the uncoupled ions may be interpreted with the mixed phase formation (MPF) model of the transient response of precipitate-based ion-selective electrodes to interfering ions for Kxy ≪ 1. It is discovered that the peak height of the transient signal is related to the solubility of M(OH)2 and hydration heat of M2+. The relation between the positive peak height of transient signal of pb2+ or cd2+ and lgam obey the Nernst equation, while that of Ca2+ or Mg2+ does not. The equilibrium potential is not of Nernst response for all ions.


platinum electrode uncoupled ion transient potential response signal mixed phase formation model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hulanicki, A., Lewenstam. A., Model for treatment of selectivity coefficients for solid-state ion-selective electrodes,Anal. Chem., 1981, 53(9): 1401.CrossRefGoogle Scholar
  2. 2.
    Lindner, E., Tóth, K., Pungor, E., Dynamic response of precipitate-based ion-selective electrodes in the presence of interfering ions,Anal. Chem., 1982, 54(2): 202.CrossRefGoogle Scholar
  3. 3.
    Morf, W. E., Time-dependent selective behavior and dynamic response of silver halide membrane electrodes to interfering ions,Anal. Chem., 1983, 55(7): 1165.CrossRefGoogle Scholar
  4. 4.
    Gratzl, M., Lindner, E., Pungor, E., Theoretical interpretation of transient signals obtained with precipitate-based ion-selective electrodes in the presence of interfering ions,Anal. Chem., 1985, 57(8): 1506.CrossRefGoogle Scholar
  5. 5.
    Lewenstam, A., Hulanicki, A., Sokalski, T., Response mechanism of solid-state ion-selective electrodes in the presence of interfering ions,Anal. Chem., 1987, 59(11): 1539.CrossRefGoogle Scholar
  6. 6.
    Berube, T. R., Buck, R. P., Lindner. al., Comparison of proposed response mechanisms of precipitate-based ion-selective electrodes in the presence of interfering ions,Anal. Chem., 1989, 61(5): 453.CrossRefGoogle Scholar
  7. 7.
    Gao Hong, Oscillographic Titration (in Chinese), Nanjing: Nanjing University Press, 1990, 433–450, 521-530.Google Scholar
  8. 8.
    Petrakovich, V. E., Oxidized-platinum electrode in electrometric analysis,Zh. Analit. Khim., 1963,18(10): 1161.Google Scholar
  9. 9.
    Doležal, J., Štulik, K., The use of platinum and carbon indicator electrodes in acid-base titrations,J. Electmnal. Chem., 1968, 17: 87.CrossRefGoogle Scholar
  10. 10.
    Antropov, L. I.,Theoretical Electrochemistry, 2nd ed., translated from Russian by Beknazarov. A., Moscow: Mr Publishers, 1977, 159.Google Scholar
  11. 11.
    Dobos, D.,Electrochemical Data, A Handbook for Electrochemists in Industry and Universities, Amsterdam-Oxford-New York: Elsevier Scientific Publishing Company, 1975, 88: 99.Google Scholar
  12. 12.
    Gan Lanruo,Inorganic Chemistry (2) (in Chinese). 2nd. ed., Nanjing: Jiangsu Science and Technology Press, 1985, 22.Google Scholar
  13. 13.
    Lindner, E., Toth, K., Pungor, al., Switched wall jet for dynamic response measurements,Anal. am., 1987, 59 (17): 2213.Google Scholar

Copyright information

© Science in China Press 1997

Authors and Affiliations

  • Shenghua Shi
    • 1
  • Shuping Yu
    • 1
  • Peng Liu
    • 1
  1. 1.Institute of Electroanalytical ChemistryNorthwest UniversityXi’anChina

Personalised recommendations