Science in China Series A: Mathematics

, Volume 44, Issue 4, pp 484–490 | Cite as

A conjecture on a class of elements of finite order in K2Fp

  • Kejian Xu
  • Hourong Qin


For a local field F the finite subgroups of K2 F are expressed by a class of special elements of finite order, which makes a famous theorem built by Moore, Carroll, Tate and Merkurjev more explicit and also disproves a conjecture posed by Browkin.


K2 group local field tame symbol Hilbert symbol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tate, J., Relation between K2 and Galois cohomology, Invent. Math., 1976, 36: 257.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Suslin, A. A., Torsion in K2 of fields, K-Theory, 1987, 1: 5.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Moore, C., Group extensions of p-adic and adelic linear groups, Publ. Math. I. H. E. S., 1969, 35: 5.Google Scholar
  4. 4.
    Carroll, J. E., On the torsion in K2 of local fields, Lecture Notes in Math., Vol. 342, Berlin: Springer-Verlag, 1973, 464.Google Scholar
  5. 5.
    Tate, J., On the torsion in K2 of fields, Algebraic Number Theory, papers contributed for the International symposium, Kyoto 1976, 243.Google Scholar
  6. 6.
    Merkujev, A. S., On the torsion in K2 of local fields, Annals of Mathematics, 1983, 118: 375.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Browkin, J., Elements of small order in K2 F, Algebraic K-Theory, Lecture Notes in Math., Vol. 966, Berlin-Heidelberg-New York: Springer-Verlag, 1982, 1–6.Google Scholar
  8. 8.
    Urbanowicz, J., On elements of given orders in K2 F, J. Pure. Appl. Alg., 1988, 50: 295.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Qin Hourong, Elements of finite order in K2F of fields, Chinese Science Bulletin, 1994, 38(24): 2227.Google Scholar
  10. 10.
    Qin Hourong, The 2-Sylow subgroups of K2OF for real quadratic fields F, Science in China (in Chinese), Ser. A, 1993, 23(12): 1254.Google Scholar
  11. 11.
    Qin Hourong, The 2-Sylow subgroups of the tame kernel of imagine quadratic fields, Acta Arith., 1995, 69: 153.MATHMathSciNetGoogle Scholar
  12. 12.
    Qin Hourong, The 4-rank of K2OF for real quadratic fields, Acta Arith., 1995, 72: 323.MATHMathSciNetGoogle Scholar
  13. 13.
    Qin Hourong, The subgroups of finite order in K2 ℚ. Algebraic K- Theory and Its Application ( eds. Bass, H., Kuku, A. O., Pedrini, C.), Singapore: World Scientific, 1999, 600–607.Google Scholar
  14. 14.
    Weiss, E., Algebraic Number Theory, New York: McGraw-Hill, 1963, 119–120, 185-186.MATHGoogle Scholar
  15. 15.
    Iwasawa, K., Local Class Field Theory (in Chinese), Beijing: Science Press, 1986, 27–28, 129-130.Google Scholar
  16. 16.
    Neukirch, J., Class Field Theory, Berlin-Heidelberg: Springer-Verlag, 1986, 50.MATHGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Kejian Xu
    • 1
    • 2
  • Hourong Qin
    • 2
  1. 1.Department of MathematicsNanjing UniversityKanjingChina
  2. 2.Department of MathematicsQingdao UniversityQingdaoChina

Personalised recommendations