Advertisement

Science in China Series C: Life Sciences

, Volume 43, Issue 1, pp 57–67 | Cite as

Proton NMR investigation of heme and surrounding proton in low-spin cyanide-ligated bacterial hemoglobin fromVitreoscilla

  • Youlin Xia
  • Jihui Wu
  • Shouhong Guang
  • Haiyang Zhang
  • Shan Liang
  • Yunyu Shi
Article
  • 28 Downloads

Abstract

1H NMR spectra of low-spin cyanide-ligated bacterial hemoglobin fromVitreoscilla (VtHb-CN) are reported. The assignments of the1H NMR spectra of VtHb-CN have been made through MCOSY, NOESY, 1D TOE and SUPERWEFT experiments. Almost all resonance peaks of heme and ligated His85 are identified. The spin-lattice relaxation timeT 1’s and the variation relationships of chemical shifts of these peaks with temperature have been acquired, from which the distances between the measured protons and Fe3+, and the diamagnetic chemical shifts have been acquired, respectively. The ionization constants of pK a’s of ligated His85 are determined through pH titration of chemical shift, which is 4.95 for ligated His85 C2H proton. The lower pK a is attributed to the influence of the Fe3+ of carrying positive charge and the coordination of His85 and Fe3+ of heme.

Keywords

hemoglobin VtHb-CN NMR relaxation pKa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tyree, B., Webster, D. A., Intermediates in the reaction of reduced cytochromeo (Vitreoscilla) with oxygen, J. Biol. Chem., 1978, 253: 6988.PubMedGoogle Scholar
  2. 2.
    Wakabayashi, S., Malsubara, H., Webster, D. A., Primary sequence of a dimeric bacterial hemoglobin fromVitreoscilla, Nature, 1986, 322: 481.PubMedCrossRefGoogle Scholar
  3. 3.
    Webster, D. A., Liu, C. Y., Reduced nicotinamide adenine dinucleotide cytochromeo reductase associated with cytochromeo purified fromVitreoscilla, J. Biol. Chem., 1974, 249: 4257.PubMedGoogle Scholar
  4. 4.
    Webster, D. A., Orii, Y., Oxygenated cytochromeo, an active intermediate observed in whole cells ofVitreoscilla, J. Biol. Chem., 1977, 252: 1834.PubMedGoogle Scholar
  5. 5.
    Tarricone, C., Galizzi, A., Coda, A. et al., Unusual structure of the oxygen ∼binding site in the dimeric bacterial Hemoglobin fromVitreoscilla sp., Structure, 1997, 5: 497.PubMedCrossRefGoogle Scholar
  6. 6.
    Bolognesi, M., Bordo, D., Rizzi, M. et al., Nonvertebrate Hemoglobins: structural bases for reactivity, Prog. Biophys. Molec. Biol., 1997, 68: 29.CrossRefGoogle Scholar
  7. 7.
    Jeffrey, S. R., Liping, P. Y., Gerd, N. L. M., 2D NMR of paramagnetic metalloenzymes: cyanide∼inhibited Horseradish Peroxidase, J. Biomol. NMR, 1991, 1: 175.CrossRefGoogle Scholar
  8. 8.
    Bertini, I., Turano, P., Vila, A. J., Nuclear magnetic resonance of paramagnetic Metalloproteins, Chem. Rev., 1993, 93: 2833.CrossRefGoogle Scholar
  9. 9.
    Lucia, B., Ivano, B., Elizabeth, A. et al.,1H NMR investigation of manganese peroxidase fromPhanerochaete chrysosporium: A comparison with other peroxidases, Biochem., 1992, 31: 10009.CrossRefGoogle Scholar
  10. 10.
    Alam, S. L., Satterlee, J. D., Complete heme proton hyperfine resonance assignments of theGlycera dibranchiata component IV metcyano monomer hemoglobin, Biochem., 1994, 33: 4008.CrossRefGoogle Scholar
  11. 11.
    Dubs, A., Wagner, G., Wüthrich, K., Individual assignments of amide proton resonances in the proton NMR spectrum of BPTI, Biochim. Biophys. Acta, 1979, 577: 177.PubMedGoogle Scholar
  12. 12.
    Inubushi, T., Becker, E. D., Efficient detection of paramagnetically shifted NMR resonances by optimizing the WEFT pulse sequence, J. Magn. Reson., 1983, 51: 128.Google Scholar
  13. 13.
    John, D. C., Gerd, N. L. M., Stephen, B., Proton NMR study of the relaxation behavior and kinetic lability of exchangeable protons in the heme pocket of cyanometmyoglobin, J. Am. Chem. Soc., 1981, 103: 3567.CrossRefGoogle Scholar
  14. 14.
    Thanable, V., de Ropp, J. S., La Mar, G. N., Proton NMR characterization of the catalytically relevant proximal and distal hydrogen∼bonding networks in ligated testing state Horseradish Peroxidase, J. Am. Chem. Soc., 1988, 110: 3027.CrossRefGoogle Scholar
  15. 15.
    Perutz, M. F., Gronenborn, A. M., Clore, G. M. et al., The pK a values of two histidine residues in human haemoblobin, the Bohr effect, and the dipole moments of α-helices, J. Mol. Biol., 1985, 183: 491.PubMedCrossRefGoogle Scholar
  16. 16.
    Hayes, M. B., Hagenmaier, H., Cohen, J. S., NMR titration curves of histidine ring protons, J. Biol. Chem., 1975, 250: 7461.PubMedGoogle Scholar
  17. 17.
    La Mar, G. N., Ropp, J. S. D., Chacko, V. P. et al., Axial histidyl imidazole non-exchangeable proton resonances as indicators of imidazole hydrogen bonding in ferric cyanide complexes of heme Peroxidases, Biochim. Biophys. Acta, 1982, 708: 317.PubMedGoogle Scholar
  18. 18.
    La Mar, G. N., Chen, Z., Vyas, K. et al., An interpretive basis of the hyperfine shifts in cyanide-inhibited Horseradish Peroxidase based on the magnetic axes and ligand tilt: Influence of substrate binding and extensions to other peroxidases, J. Am. Chem. Soc., 1995, 117: 41Google Scholar

Copyright information

© Science in China Press 2000

Authors and Affiliations

  • Youlin Xia
    • 1
    • 2
  • Jihui Wu
    • 1
    • 2
  • Shouhong Guang
    • 1
    • 2
  • Haiyang Zhang
    • 1
    • 2
  • Shan Liang
    • 1
    • 2
  • Yunyu Shi
    • 1
    • 2
  1. 1.School of Life ScienceUniversity of Science and Technology of China (USTC)HefeiChina
  2. 2.Laboratory of Structural BiologyUSTC, Chinese Academy of SciencesHefeiChina

Personalised recommendations