On the behaviour of small clusters near the spinodal decomposition

  • Biman Bagchi
Physical and Theoretical


The canonical average of the Boltzmann factor of the interaction potential, as measured by a test particle, is shown to be equal to the inverse of the fraction of the average number \((\bar m_1 )\) of 1-particle Mayer clusters. The potential distribution theory is used to derive an analytic expression for a mean number of small clusters \((\bar m_n {\text{ , 1 }} \leqslant {\text{ }}n < {\text{ }}N,\) 1≤n<N, in anN-particle system) in the mean-field expression. Near the spinodal density, the average number of small clusters undergo a sharp change. Computation of pressure shows that only the first four clusters produce surprisingly good agreement with known pressure even beyond the spinodal density.


Behaviour of small clusters spinodal decomposition interaction potential Mayer clusters spinodal density mean-field theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham F F 1971Homogeneous nucleation theory: The pretransition theory of vapour condensation, Advances in theoretical chemistry Suppl. 1 (New York: Academic Press)Google Scholar
  2. Adams D J 1974Mol. Phys. 28 1241CrossRefGoogle Scholar
  3. Bagchi B 1980 Ph. D. thesis,From gelation to condensation and some contributions to Bose-Einstein condensation in finite systems Brown UniversityGoogle Scholar
  4. Bagchi B and Mohanty U 1982.Phys. Lett. A91 77CrossRefGoogle Scholar
  5. Bagchi B 1987Chem. Phys. Lett. 134 121CrossRefGoogle Scholar
  6. Becker R and Doring W 1935Ann. Phys. 24 719CrossRefGoogle Scholar
  7. Bell E T 1934Am. Math. 35 258CrossRefGoogle Scholar
  8. Donoghue E and Gibbs J H 1981J. Chem. Phys. 74 2975CrossRefGoogle Scholar
  9. Garcia N G and Soler Torroja T M 1981Phys. Rev. Lett. 47 186CrossRefGoogle Scholar
  10. Gibbs J H, Bagchi B and Mohanty U 1981Phys. Rev.,B24 2893CrossRefGoogle Scholar
  11. Gills H P, Martin D C and Reiss H 1977J. Chem. Phys. 66 214, 223CrossRefGoogle Scholar
  12. Hansen J P and MacDonald I R 1976Theory of simple liquids (London: Academic Press)Google Scholar
  13. Hill T 1956Statistical mechanics (New York: McGraw-Hill)Google Scholar
  14. Kalos M H, Lobowitz J L, Penrose O and Sen A 1978J. Stat. Phys. 18 39CrossRefGoogle Scholar
  15. Lee J K, Barker J A and Abraham F F 1973J. Chem. Phys. 58 3166CrossRefGoogle Scholar
  16. Lockett A M 1980J. Chem. Phys. 72 4822CrossRefGoogle Scholar
  17. Mayer J E and Mayer M G 1980Statistical mechanics (New York: Wiley)Google Scholar
  18. Mohanty U, Bagchi B and Gibbs J H 1982J. Stat. Phys. 28 685CrossRefGoogle Scholar
  19. Penrose D and Lebowitz J L 1979 inFluctuation Phenomena Vol. VII ofStudies in statistical mechanics (eds) E W Montroll and J L Lebowitz (Amsterdam: North-Holland)Google Scholar
  20. Powless J G 1980Mol. Phys. 41 715CrossRefGoogle Scholar
  21. Riordan J 1978An introduction to combi atorial analysis (Princeton: University Press)Google Scholar
  22. Romamo S and Singer K 1979Mol. Phys. 37 1765CrossRefGoogle Scholar
  23. Shing K S and Gubbins K P 1981Mol. Phys. 43 717CrossRefGoogle Scholar
  24. Weeks J D, Chandler D and Anderson H C 1971J. Chem. Phys. 54 5237CrossRefGoogle Scholar
  25. Widom B 1963J. Chem. Phys. 39 2808CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1987

Authors and Affiliations

  • Biman Bagchi
    • 1
  1. 1.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations