Folia Microbiologica

, Volume 32, Issue 3, pp 234–238 | Cite as

Comparison of peas nodulated with a hydrogen-uptake positive or negative Strain ofRhizobium leguminosarum

II. Biomass accumulation, potential and actual dinitrogen fixation
  • V. Škrdleta
  • L. Lisá
  • M. Němcová


Pea plants nodulated with a Hup+ strain ofR. leguminosarum produced a significantly lower amount of the root nodule dry mass in comparison with plants nodulated with a Hup- strain but the Nt content in this biomass was remarkably high (up to 9 %). No difference was found in the root, shoot and total plant biomass as well as in the nitrogen yield by the host plants between the two symbioses. The adoption of the potential value of dinitrogen fixation derived from acetylene reduction and dihydrogen production by the nodules resulted in a significant underestimation of the actual nitrogen yield by the Hup--nodulated plants.


Nitrogen Fixation Rhizobium Leguminosarum Total Plant Biomass Uptake Hydrogenase Dinitrogen Fixation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht S.L., Maier R.J., Hanus F.J., Russell S.A., Emerich D.W., Evans H.J.: Hydrogenase inR. japonicum increases nitrogen fixation by nodulated soybeans.Science203, 1255–1257 (1979).PubMedCrossRefGoogle Scholar
  2. Arima Y.: Respiration and efficiency of N2 fixation by nodules formed with a H2-uptake positive strain ofRhizobium japonicum.Soil Sci.Plant Nutr.27, 115–119 (1981).Google Scholar
  3. Bedmar E.J., Phillips D.A.:Pisum sativum cultivar effects on hydrogen metabolism inRhizobium.Can.J.Bot.62, 1682–1686 (1984).Google Scholar
  4. Dixon R.O.D.: Hydrogenase in pea root nodule bacteroids.Arch.Mikrobiol.62, 272–283 (1968).PubMedCrossRefGoogle Scholar
  5. Dlson R.O.D.: Hydrogenase in legume root nodule bacteroids: occurrence and properties.Arch. Mikrobiol.85, 193–201 (1972).CrossRefGoogle Scholar
  6. Dixon R.O.D., Bluden E.A.G., Searl J.W.: Intercellular space and hydrogen diffusion in pea and lupin root nodules.Plant Sci.Lett.23, 109–116 (1981).CrossRefGoogle Scholar
  7. Eisbrenner Gr., Evans H.J.: Aspects of hydrogen metabolism in nitrogen-fixing legumes and other plant-microbe associations.Ann.Rev.Plant Physiol.34, 105–136 (1983).CrossRefGoogle Scholar
  8. Emerich D.W., Ruiz-Argüeso T., Ching T.M., Evans H.J.: Hydrogen-dependent nitrogenase activity and ATP formation inRhizobium japonicum bacteroids.J.Bacteriol.137, 153–160 (1979).PubMedGoogle Scholar
  9. Evans H.J., Hanus F.J., Russell S.A., Harker A.R., Lambert G.R., Dalton D.A.: Biochemical characterization, evaluation, and genetics of H2 recycling inRhizobium, pp. 3–11 inP.W. Ludden, J.E. Burris (Eds.):Nitrogen Fixation and CO2Metabolism. Elsevier Science Publishing Co., Amsterdam-Oxford 1985.Google Scholar
  10. Gober J.W., Kashket E.R.: H+/ATP stoichiometry of cowpeaRhizobium sp. strain 32H1 cells grown under nitrogen-fixing and nitrogen-nonfixing conditions.J.Bacteriol.160, 216–221 (1984).PubMedGoogle Scholar
  11. Hanus F.J., Albrecht S.L., Zablotowicz R.M., Emerich D.W., Russell S.A., Evans H.J.: Yield and N content of soybean seed as influenced byRhizobium japonicum inoculants possessing the hydrogenase characteristic.Agron.J.73, 368–372 (1981).Google Scholar
  12. La Favre J.S., Focht D.D.: Comparison of N2 fixation and yields inCajanus cajan between hydrogenase-positive and hydrogenase-negative rhizobia byin situ acetylene reduction assays and direct15N partitioning.Plant Physiol.72, 971–977 (1983).PubMedGoogle Scholar
  13. Lepo J.E., Hanus F.T., Evans H.J.: Further studies on the chemoautotrophic growth of hydrogen uptake positive strains ofR. japonicum.J.Bacteriol.141, 664–670 (1980).PubMedGoogle Scholar
  14. Lodha M.L., Naik M.S.: Reduction of NAD+ by uptake hydrogenase from groundnut bacteroids.Ind.J.Biochem.Biophys.21, 206–207 (1984).Google Scholar
  15. Maier R.J., Hanus F.J., Evans H.J.: Regulation of hydrogenase inR. japonicum.J.Bacteriol.137, 824–829 (1979).Google Scholar
  16. Merberg D., Maier R.J.: Coordinate expression of hydrogenase and ribulose biphosphate carboxylase inRhizobium japonicum Hupc mutants.J.Bacteriol.160, 448–450 (1984).PubMedGoogle Scholar
  17. Nelson L.M.: Hydrogen recycling byRhizobium leguminosarum isolates and growth and nitrogen contents of pea plants (Pisum sativum L.).Appl. Environ. Microbiol.45, 856–861 (1983).PubMedGoogle Scholar
  18. Nelson L.M., Child J.J.: Nitrogen fixation and hydrogen metabolism byRhizobium leguminosarum isolates in pea root nodules.Can. J. Microbiol.27, 1028–1034 (1981).CrossRefGoogle Scholar
  19. Nelson L.M., Salminen S.O.: Uptake hydrogenase activity and ATP formation inRhizobium leguminosarum bacteroids.J.Bacteriol.151, 989–995 (1982).PubMedGoogle Scholar
  20. Phillips D.A., Bedmar E.J., Qualset C.O., Teuber L.R.: Host legume control ofRhizobium function, pp. 203–212 inP.W. Ludden, J.E. Burris (Eds.):Nitrogen Fixation and CO2Metabolism. Elsevier Science Publishing Co., Amsterdam-Oxford 1985.Google Scholar
  21. Rainbird R.M., Atkins C.A., Pate J.S., Sanford P.: Significance of hydrogen evolution in the carbon and nitrogen economy of nodulated cowpea.Plant Physiol.71, 122–127 (1983).PubMedGoogle Scholar
  22. Rainbird R.M., Hitz W.D., Hardy R.W.F.: Experimental determination of the respiration associated with soybean/Rhizobium nitrogenase function, nodule maintenance, and total nodule nitrogen fixation.Plant Physiol.75, 49–53 (1984).PubMedGoogle Scholar
  23. Salminen S.O., Nelson L.M.: Role of uptake hydrogenase in providing reductant for nitrogenase inRhizobium, leguminosarum bacteroids.Biochim.Biophys.Acta764, 132–137 (1984).CrossRefGoogle Scholar
  24. Schubert K.R., Evans H.J.: Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts.Proc.Nat.Acad.Sci.USA73, 1207–1211 (1976).PubMedCrossRefGoogle Scholar
  25. Schubert K.R., Jennings N.T., Evans H.J.: Hydrogen reactions of nodulated leguminous plants. II. Effects on dry matter accumulation and nitrogen fixation.Plant Physiol.61, 398–401 (1978).PubMedGoogle Scholar
  26. Simpson F.B., Maier R.J., Evans J.H.: Hydrogen-stimulated CO2 fixation and coordinate induction of hydrogenase and ribulose-biphosphate carboxylase in a H2-uptake positive strain ofRhizobium japonicum.Arch.Microbiol.123, 1–8 (1979).CrossRefGoogle Scholar
  27. Skøt L.: Relationship between C2H2 reduction, H2 evolution and15N2 fixation in root nodules of pea (Pisum sativum).Physiol.Plant59, 581–584 (1983).CrossRefGoogle Scholar
  28. Škrdleta V., Lisá L., Němcová M.: Comparison of peas nodulated with a hydrogen-uptake positive or negative phenotype ofRhizobium leguminosarum. I. Nodulation, acetylene-reducing, dihydrogen and carbon dioxide-evolving activities.Folia Microbiol.32, 226–233 (1987).CrossRefGoogle Scholar
  29. Stouthamer A.H.: Energy generation and hydrogen metabolism inRhizobium, pp. 189–197 inC. Veeger, W.E. Newton (Eds.):Advances in Nitrogen Fixation Research. Martinus Nijhoff-W. Junk Publishers, The Hague-Boston-Lancaster; PUDOC, Wageningen 1984.Google Scholar
  30. Truelsen T.A., Wyndaele R.: Recycling efficiency in hydrogen uptake positive strains ofRhizobium leguminosarum.Physiol.Plant.62, 45–50 (1984).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1987

Authors and Affiliations

  • V. Škrdleta
    • 1
  • L. Lisá
    • 1
  • M. Němcová
    • 1
  1. 1.Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations