Two new graph-theoretical methods for generation of eigenvectors of chemical graphs

  • Asok K Mukherjee
  • Kali Kinkar Datta
Physical and Theoretical


Two new graph-theoretical methods, (A) and (B), have been devised for generation of eigenvectors of weighted and unweighted chemical graphs. Both the methods show that not only eigenvalues but also eigenvectors have full combinatorial (graph-theoretical) content. Method (A) expresses eigenvector components in terms of Ulam’s subgraphs of the graph. For degenerate eigenvalues this method fails, but still the expressions developed yield a method for predicting the multiplicities of degenerate eigenvalues in the graph-spectrum. Some well-known results about complete graphs (K n) and annulenes (C n ), viz. (i)K n has an eigenvalue −1 with (n−1)-fold degeneracy and (ii) C n cannot show more than two-fold degeneracy, can be proved very easily by employing the eigenvector expression developed in method (A). Method (B) expresses the eigenvectors as analytic functions of the eigenvalues using the cofactor approach. This method also fails in the case of degenerate eigenvalues but can be utilised successfully in case of accidental degeneracies by using symmetry-adapted linear combinations. Method (B) has been applied to analyse the trend in charge-transfer absorption maxima of the some molecular complexes and the hyperconjugative HMO parameters of the methyl group have been obtained from this trend.


Graph-theory Ulam’s subgraphs characteristic polynomials eigenvectors multiplicity of degenerate eigenvalues complete graphs cofactor polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aihara J 1976J. Am. Chem. Soc. 98 6840CrossRefGoogle Scholar
  2. Beineke L W and Wilson R J (ed.) 1978Selected topics in graph theory (London: Academic Press) pp. 300–311Google Scholar
  3. Coulson C A and Longuet-Higgins H C 1947,Proc. R. Soc. (London) A191 39CrossRefGoogle Scholar
  4. Coulson C A and Streitwieser A Jr 1965Dictionary of π-electron calculations (Pergamon Press) pp. 29–30Google Scholar
  5. Farrell P G and Newton J 1965J. Phys. Chem. 69 3506CrossRefGoogle Scholar
  6. Fukui K, Yonezawa T and Nagata C 1954J. Chem. Phys. 27 423Google Scholar
  7. Fukui K, Yonezawa T, Nagata C and Shingu H 1954J. Chem. Phys. 22 1433CrossRefGoogle Scholar
  8. Graovac A, Gutman I and Trinajstic N 1977Topological approach to the chemistry of conjugated molecules (Berlin: Springer-Verlag)Google Scholar
  9. Gutman I and Cvetkovic D M 1975Publ. Electrotech. Fak. Univ. Belgrade 505 45Google Scholar
  10. Gutman I and Polansky O E 1986Mathematical concepts in organic chemistry (Berlin: Springer-Verlag)Google Scholar
  11. Harary F 1967Graph theory and theoretical physics (London. Academic Press)Google Scholar
  12. Hückel E 1932Z. Phys. 76 628CrossRefGoogle Scholar
  13. Kassman A J 1985Theor. Chim. Acta 67 255CrossRefGoogle Scholar
  14. Keysel O’ 1974Z. Phys. Chem. (Neue Folge) 89 62Google Scholar
  15. Lepley A R 1964J. Am. Chem. Soc. 86 2545CrossRefGoogle Scholar
  16. Matsen F A 1950J. Am. Chem. Soc. 72 5243CrossRefGoogle Scholar
  17. McConnell H, Ham J and Platt J 1953J. Chem. Phys. 21 66CrossRefGoogle Scholar
  18. Mulliken R S and Person W B 1961Annu. Rev. Phys. Chem. 13 107CrossRefGoogle Scholar
  19. Mulliken R S and Person W B 1969Molecular complexes (New York: Wiley Interscience) p. 120Google Scholar
  20. Mulliken R S and Rieke C A 1941J. Am. Chem. Soc. 63 1770CrossRefGoogle Scholar
  21. Mulliken R S, Rieke C A and Brown W G 1941.J. Am. Chem. Soc. 63 41CrossRefGoogle Scholar
  22. Mukherjee A K 1988J. Math. Chem. 2 279CrossRefGoogle Scholar
  23. Mukherjee A K and Seal B K 1986Indian J. Chem. A25 531Google Scholar
  24. Randić M 1982J. Comput. Chem. 3 421CrossRefGoogle Scholar
  25. Seal B K and Mukherjee A K 1984Indian J. Chem. A23 797Google Scholar
  26. Streitwieser A Jr 1961Molecular orbital theory for organic chemistry (New York: John Wiley & Sons) p. 135Google Scholar
  27. Streitwieser A Jr and Nair P M 1959Tetrahedron 5 149CrossRefGoogle Scholar
  28. Ulam S M 1960A collection of mathematical problems (New York: Wiley) p. 29Google Scholar

Copyright information

© Indian Academy of Sciences 1981

Authors and Affiliations

  • Asok K Mukherjee
    • 1
  • Kali Kinkar Datta
    • 1
  1. 1.Chemistry DepartmentBurdwan Raj CollegeBurdwanIndia

Personalised recommendations