Fractal structure and fractal dimension determination at nanometer scale

  • Zhang Yue 
  • Li Qikai 
  • Chu Wuyang 
  • Wang Chen 
  • Bai Chunli 


Three-dimensional fractures of different fractal dimensions have been constructed with successive random addition algorithm, the applicability of various dimension determination methods at nanometer scale has been studied. As to the metallic fractures, owing to the limited number of slit islands in a slit plane or limited datum number at nanometer scale, it is difficult to use the area-perimeter method or power spectrum method to determine the fractal dimension. Simulation indicates that box-counting method can be used to determine the fractal dimension at nanometer scale. The dimensions of fractures of valve steel 5Cr21Mn9Ni4N have been determined with STM. Results confirmed that fractal dimension varies with direction at nanometer scale. Our study revealed that, as to theoretical profiles, the dependence of frsctal dimension with direction is simply owing to the limited data set number, i.e. the effect of boundaries. However, the dependence of fractal dimension with direction at nanometer scale in real metallic fractures is correlated to the intrinsic characteristics of the materials in addition to the effect of boundaries. The relationship of fractal dimensions with the mechanical properties of materials at macrometer scale also exists at nanometer scale.


fractures nanometer scale fractal dimension simulation 


  1. 1.
    Mandelbrot, B. B.,The Fractal Geometry of Nature, San Fransisco: Freeman, 1983, 1–3.Google Scholar
  2. 2.
    Long, C. W., Mu, Z. Q., Limited level fractal structures and fracture behavior of solid state materials,Science in China ( in Chinese), Ser. A, 1994, 24(1): 94.Google Scholar
  3. 3.
    Zhang, Y., Chu, W. Y., Wang, Y. B. et a1., Study of cleavage fracture surface of TiAl alloys at nanometer scale,Acta Metall. Sinica (in Chinese), 1995, A31(5): 191.Google Scholar
  4. 4.
    Bai, C. L.,Scanning Tunneling Microscopy and Its Applications ( in Chinese ), Shanghai: Shanghai Sci. and Tech. Press, 1993, 1–15.Google Scholar
  5. 5.
    Mitchell, M. W., Bonnell, D. A., Quantitative topographic analysis of fractal surfaces by scanning tunneling micmscopy,J. Mat. Res., 1990, 5(10): 2244.CrossRefGoogle Scholar
  6. 6.
    Muller, M., Vehoff, H., Neuman, P., STM on cracks in brittle materials,Cntramicroscopy, 1992, 42–44: 1412.CrossRefGoogle Scholar
  7. 7.
    Fries, T. H., Oster, K., Wandelt, K., In situ scanning tunneling microscopy of three-point bending investigation,Acta Metall. Mater., 1994, 42(9): 3493.Google Scholar
  8. 8.
    Zhang, Y., Chu, W. Y., Wang, Y. B., et a1., Scanning tunneling microscopy observation of the cleavage fracture surfaces of titanium aluminide,J. Vac. Sci. Techno1. B, 1994, 12(3): 1722.CrossRefGoogle Scholar
  9. 9.
    Sriram, T. S., Ke, C. M., Chung, Y. W., Fatigue deformation of silver single crystal: STM evidence for crack nucleation, measurements of slip irreversibility and verification of a new scaling relation for fatigue life,Acta Matll. Mater., 1993, 41(8): 2515.CrossRefGoogle Scholar
  10. 10.
    Stelmashenko, N. A., Walls, M. G., Brown, L. M., Microindentation on W and Mo oriented single crystals: an STM study,Acta Metall. Mater., 1993, 41(10): 2855.CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., Wang, Z. H., Chu, W. Y. et al., Study on features at nanometer scale and fractal dimension of brittle fractures of metallic compounds with STM,Science in China (in Chinese), Ser. A, 1995, 25(6): 659.Google Scholar
  12. 12.
    Goodchild, M. F., Fractals and accuracy of geographical measures,Mathematical Geology, 1980, 12: 85.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Mandelbrot, B. B., Wallis, J. R., Computer experiments with fractional Gaussian noise, Water Resources Res. 5, 1969.Google Scholar
  14. 14.
    Womell, G. W., A karhunen-loeve-like expansion for 1/f processes via wavelets,IEEE Trans. on Info. Theory, 1990, 36(4): 859.CrossRefGoogle Scholar
  15. 15.
    Berry, M. V., Lewis, Z. V., On the Weierstrass-Mandelbrot fractal functions,Proc. R. Sec. London, 1980, A370: 459–484.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Voss, R. F., Fractals in nature: from characterization to simulation, inThe Science of Fractal Image, Berlin: Springer-Verlag, 1988.Google Scholar
  17. 17.
    Gomez-Rodriguez, J. M., Baro, A. M., Salvarezza, R. C., Fractal characterization of gold deposits by scanning tunneling microscopy,J. Vac. Scr. Technol., 1991, B9(2):495.CrossRefGoogle Scholar
  18. 18.
    Gomez-Rodriguez, J. M., Baro, A. M., Vazquez, L. et a1., Fractal surfaces of gold and platinum electrodeposits: Dimensionality determination by scanning tunneling microscopy,J. Phys. Chem., 1992, 96: 347.CrossRefGoogle Scholar
  19. 19.
    Mitchell, M. W., Bonnell, D. A., Quantitative topographic analysis of fractal surfaces by scanning tunneling microscopy,J. Mater. Res., 1990, 5: 2244.CrossRefGoogle Scholar
  20. 20.
    Auguilar, M., Pancorbo, M., Vazquez, F. et al., Study of the surface roughness of Co-based amorphous alloys by STM,Ultramicroscopy, 1992, 42–44: 1329.CrossRefGoogle Scholar
  21. 21.
    Gomez-Rodriguez, J. M., Asenjo, A., Salvarezza, R. C. et a1., Measuring the fractal dimension with STM: application to vacuum-evaporated gold,Ultramicroscopy, 1992, 42–44: 1321.CrossRefGoogle Scholar
  22. 22.
    Li, Q. K., Zhang, Y., Chu, W. Y., One-dimensional fractal curves and determination of fractal dimension,J. of Univ. of Sci. & Technol., 1998, 3(5): 163.Google Scholar
  23. 23.
    Shu, H., Zhang, Y. G., Yan, Z. Q., Fractal analysis of impact fracture of metal,Acta Metall. Sinica ( in Chinese), 1989, A25(6): 466.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Zhang Yue 
    • 1
  • Li Qikai 
    • 1
  • Chu Wuyang 
    • 1
  • Wang Chen 
    • 2
  • Bai Chunli 
    • 2
  1. 1.Department of Materials PhysicsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations