Science in China Series A: Mathematics

, Volume 42, Issue 9, pp 897–904 | Cite as

Eigenvalue estimate on a compact Riemann manifold

  • Zhao Di 


LetM be a compact Riemann manifold with the Ricci curvature ≽ - R(R = const. > 0) . Denote by d the diameter ofM. Then the first eigenvalue λ1 ofM satisfies\(\lambda _1 \geqslant \frac{{\pi ^2 }}{{d^2 }} - 0.52R\). Moreover if\(R \leqslant \frac{{5\pi ^2 }}{{3d^2 }}\), then\(\lambda _1 \geqslant \frac{{\pi ^2 }}{{d^2 }} - \frac{R}{2}\)


Riemann manifold eigenvalue Ricci curvature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhong, J. Q., Yang, H. C., On the estimate of the first eigenvalue of a compact Riemannian manifold,Scientia Sinica, Ser. A, 1984, 27(12): 1265.MathSciNetGoogle Scholar
  2. 2.
    Yang, H. C., Estimate of first eigenvalue for a compact Riemann manifold,Science in China, Ser. A, 1990, 33(1: 39.MATHGoogle Scholar
  3. 3.
    Li, P., Yau. S. T., Estimates of eigenvalues of a compact Riemann manifold,Proc. Sym. Pure Math., 1980, 36: 203.Google Scholar
  4. 4.
    Jia Fang, Estimate on the first eigenvalue of a compact Riemann manifold,Chin. Ann. Math., Ser A, 1991, 12(4): 496.Google Scholar
  5. 5.
    Chen, M. F., Wang, F. Y., General formula for lower bound of the first eigenvalue on Riemannian manifolds,Science in China, Ser. A, 1997, 40(4): 386.Google Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Zhao Di 
    • 1
  1. 1.Institute of MathematicsChinese Academy of SciencesBeijingChina

Personalised recommendations