Science in China Series A: Mathematics

, Volume 42, Issue 6, pp 570–576 | Cite as

Harmonic polynomial morphisms between Euclidean spaces

  • Tang Zizhou


Two non-existence theorems on harmonic polynomial morphisms between Euclidean spaces have been shown.


harmonic morphism nonsingular multilinear map isoparametric polynomial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eells, J., Lemaire, L., A report on harmonic maps,Bull. London Math. Soc., 1978, 10: 1.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Baird, P., Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, inRes. Notes in Math., Vol. 87, London: Pitman, 1983.Google Scholar
  3. 3.
    Fuglede, B., Harmonic morphisms between Riemannian manifolds,Ann. Inst. Fourier (Grenoble), 1978, 28: 107.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Ishihara, T., A mapping of Riemannian manifolds which preserves harmonic functions,J. Math. Kyoto Univ., 1979, 12: 215.MathSciNetGoogle Scholar
  5. 5.
    Bernard, A., Campbell, E. A., Davie, A. M., Brownian motion and generalized analytic and inner functions,Ann. Inst. Fourier (Grenoble), 1979, 29: 207.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Baird, P., Harmonic morphisms and circle action on 3- and 4-manifolds,Ann. Inst. Fourier (Grenoble), 1990, 40: 177.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Baird, P., Ou, Y. L., Harmonic maps and morphisms, from multilinear norm-preserving mappings, Inter. J. Math., 1997, 187.Google Scholar
  8. 8.
    Eells, J., Yiu, P., Polynomial harmonic morphisms between Euclidean spheres,Proc. A. M. S., 1995, 123: 2921.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Lam, K. Y., Some new results in compositions of quadratic forms,Invent. Math., 1985, 79: 467.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Yiu, P., Quadratic forms between spheres and the non-existence of sums of squares formulae,Math. Proc. Comb. Phil. Soc., 1986, 100: 493.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ginsburg, M., Some immersions of projective space in Euclidean space,Topology, 1963, 2: 69.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Münzner, H. F., Isoparametric hyperflachen in spharen,I Math. Ann., 1980, 251: 57.MATHCrossRefGoogle Scholar
  13. 13.
    Münzner, H. F., Isoparametric hyperflachen in spharen,II Math. Ann., 1981, 256: 215.MATHCrossRefGoogle Scholar
  14. 14.
    Ou, Y. L., Quadratic harmonic morphisms and O-systemes,Ann. Inst. Fourier (Grenoble), 1997, 47: 687.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Nomizu, K., Eliee Cartan’s work on isoparametric hypersurfaces in spheres,Proc. Symp. Pure Math., 1975, 27: 191.MathSciNetGoogle Scholar
  16. 16.
    Adams, J. F., Vector fields on spheres,Ann. Math., 1962, 75: 603.MATHCrossRefGoogle Scholar
  17. 17.
    Eckmann, B., Gruppentheorelischer beweis des satzes von Hurwitz-Radon uber die komposition quadratischer formen,Comm. Math. Helv., 1943, 15: 358.MATHCrossRefGoogle Scholar
  18. 18.
    Adams, J. F., Lax, P. D., Philips, R. S., On matrices whose linear combinations are nonsingular,Proc. A. M. S., 1965, 16: 318.Google Scholar
  19. 19.
    Adams, J. F., Lax, P. D., Phillips, R. S., On matrices whose linear combinations are nonsingular,Proc. A. M. S., 1966, 17: 945.MathSciNetGoogle Scholar
  20. 20.
    Ferus, D., Karcher, H., Munzner, H. F., Clifford algebren und neue isoparametrische hyperflachen,Math. Z., 1981, 177: 479.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Cartan, E., Sur des families remarquables d’hypersurfaces isoparametriques dans les espaces spheriques,Math. Z., 1939, 45: 335.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Abresch, U., Isoparametric hypersurfaces with four or six distinct principal curvatures,Math. Ann., 1983, 264: 283.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Tang, Z. Z., Isoparametric hypersurfaces with four distinct principal curvatures,Chinese Sci. Bull., 1991, 36: 1237.MathSciNetMATHGoogle Scholar
  24. 24.
    Dorfmesiter, J., Neher, E., Isoparametric hypersurfaces, case g = 6, m = 1,Comm. in Alg., 1985, 13: 2299.CrossRefGoogle Scholar
  25. 25.
    Takagi, R., Takahashi, T., On the principal curvatures of homogeneous hypersurfaces in a sphere, inDifferential Geometry, in honor of K. Yano (ed. Kabayashi, S.), Tokyo: Kinokuniya, 1972, 469.Google Scholar
  26. 26.
    Peng, C. K., Hou, Z. X., A remark on the isoparametric polynomial of degree 6, in differential geometry and topology,Lectures Notes in Math. (ed. Jiang, B.) Vol. 1369, Berlin: Springer-Verlag, 1986-87, 222.Google Scholar
  27. 27.
    Miyaoka, R., The linear isotropy group of G2/SO(4), the Hopf fibering and isoparametric hypersurfaces,Osaka J. Math., 1993, 30: 179.MathSciNetMATHGoogle Scholar

Copyright information

© Science in China Press 1999

Authors and Affiliations

  • Tang Zizhou
    • 1
  1. 1.Department of Applied MathematicsTsinghua UniversityBeijingChina

Personalised recommendations