Biologia Plantarum

, Volume 27, Issue 4–5, pp 310–317 | Cite as

Auxin in flowering of short-pay and long-dayChenopodium species

  • J. Krekule
  • Libuše Pavlová
  • Dagmar Součkova
  • Ivana Machácková
Original Papers


The fluctuation of free IAA under 16 h dark period in shoots (receptor organs of photoperiodic induction) and roots of the short-day plant (SDP)Chenopodium rubrum and in shoots of the long-day plant (LDP)Chenopodium murale is very similar. The data reflect the general adjustment of auxin level to day-length rather than changes due to floral induction. However, the shift in phasing of the circadian rhythm of flowering was accompanied by a change in the position of the’ troughs’ of free IAA levels indicating a possible relationship between the two processes. Periods of higher sensitivity to application of IAA (3. 10-4M) inhibitory to flowering have been observed both during the endogenous rhythm of flowering in the SDPC. rubrum and during induction by days of continuous illumination in the LDPC. murale. There exist common traits in the response of LDP and of SDPChenopodium to auxin treatment. Aminoethoxyvinylglycine (AVG), an inhibitor of ethylene biosynthesis, counteracted some flowering inhibitory effects of IAA when applied simultaneously with it. This suggests that auxin effects in modifying flowering might in fact be due to ethylene.


Dark Period Ethylene Biosynthesis Floral Induction Endogenous Rhythm Chenopodium Rubrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksenova, N. P., Bavrina, T. V., Konstantinova, T. N., Chaïlakhyan, M. Kh.: [Callus model of flowering and the perspectives of its investigation.] In Russ. - Zh. obshch. Biol.33: 523–538, 1972.Google Scholar
  2. Andreae, S. R.: The effect of abscisic acid on the rhythmic flowering response ofChenopodium rubrum. - In: Abstracts XII International Botanical Congress. Vol. II. P. 277. Nauka, Leningrad 1975.Google Scholar
  3. Cooke, A. R.: Changes in free auxin content during the photoinduction of short-day plants. - Plant Physiol.29: 440–444, 1954.PubMedGoogle Scholar
  4. Dostál, R., Hošek, M.: Über den Einfluss von Heteroauxin auf die Morphogenese beiCircaea (das Sachssche Phänomen). - Flora131: 263–286, 1937.Google Scholar
  5. Khatoon, S., Seidlová, F., Krekule, J.: Time-dependence of auxin and ethrel effects on flowering inChenopodium rubrum L. - Biol. Plant.15 : 361–363, 1973.Google Scholar
  6. King, R. W.: Multiple circadian rhythms regulate photoperiodic flowering response inChenopodium rubrum. - Can. J. Bot.53: 2631–2638, 1975.Google Scholar
  7. King, R. W., Cumming, G.: Rhythms as photoperiodic timers in the control of flowering inChenopodium rubrum L. - Planta103 : 281–301, 1972.CrossRefGoogle Scholar
  8. Krekule, J., Přívratsky, J.: The shoot apex as the site of an inhibitory effect of applied auxin on photoperiodic induction of flowering in the short-day plantChenopodium rubrum L. - Z. Pflanzenphysiol.71: 345–348, 1974.Google Scholar
  9. Lang, A.: Auxins in flowering. - In:Ruhland, W. H. (ed.): Handbuch der Pflanzenphysiologie, Vol. XIV. Pp. 909 - 958. Springer Verlag, Berlin - Heidelberg - Göttingen 1961.Google Scholar
  10. Lozhnikova, V. N., Krekule, J., Seidlová, F., Bavrina, T. V., Chaïlakhyan, M. Kh.: [Balance between gibberellins and abscisins in tobacco in the course of photoperiodic induction of flowering.] In Russ. - Fiziol. Rast.29: 247–252, 1982.Google Scholar
  11. Machácková, I., Krekule, J., Součková, D. Přikryl, Z., Ullmann, J.: Reversion of IAA-induced inhibition of flowering in long-day and short-dayChenopodium species by aminoethoxyvinyl glycine. - J. Plant Growth Regul. (in press).Google Scholar
  12. Mousdale, D. M. A., Butcher, D. N., Powell, R. G.: Spectrophotofluorimetric methods of determining indole-3-aeetic acid. - In:Hillman, J. R., (ed.): Isolation of Plant Growth Substances. Pp. 27–39. London: Cambridge University Press, Cambridge 1978.Google Scholar
  13. Nakayama, S.: Studies on the dark process in the photoperiodic response ofPharbitis seedlings. - Sci. Rep. Tohoku Univ.24: 137–183, 1958.Google Scholar
  14. Pavlová, L., Krekulk, J.: Fluctuation of free IAA under inductive and non-inductive photoperioda inChenopodium rubrum. - Plant Growth Regulation2: 91–98, 1984.CrossRefGoogle Scholar
  15. Přívratský, J., Tykva, R., Krekule, J.: The possible role of auxin in reversing photoperiodic induction of flowering in a short-day plantChenopodium rubrum L. - Z. Pflanzenphysiol.78: 377–386, 1976.Google Scholar
  16. Salisbury, F. B.: The dual role of auxin in flowering. - Plant Physiol.30: 327–334, 1955.PubMedCrossRefGoogle Scholar
  17. Seidlová, F., Khatoon, S.: Effects of indol-3yl-acetie acid on floral induction and apical differentiation inChenopodium rubrum. - Ann. Bot.40: 37–42, 1976.Google Scholar
  18. Skripchinskiï, V. V.: Fotoperiodizm - Ego Proiskhozhdenie i Evolyutsiya. [Photoperiodism and Its Origin in Evolution.] - Nauka. Leningrad 1975.Google Scholar
  19. Teltscherová, L., Pavlová, L., Pleskotová, D.: Changes in the content of endogenous auxins in apical buds ofChenopodium rubrum L. induced with respect to the endogenous rhythm in capacity to flower. - Biol. Plant.19: 205–211, 1977.Google Scholar
  20. Ullmann, J., Seidlová, F., Krekule, J., Pavlová, L.:Chenopodium rubrum as a model plant for testing the flowering effects of PGRs. - Biol. Plant.27: 367–372, 1985.Google Scholar
  21. Vanden Driessche, T.: Circadian rhythmicity: general properties - as exemplified mainly byAcetabularia - and hypothesis on its cellular mechanism. - Arch. Biol. (Bruxelles)91: 49–76, 1980.Google Scholar
  22. Yang, F. S., Hoffman, N. E.: Ethylene biosynthesis and its regulation in higher plants. - Annu. Rev. Plant Physiol,35: 155–189, 1984.CrossRefGoogle Scholar

Copyright information

© Academia 1985

Authors and Affiliations

  • J. Krekule
    • 1
  • Libuše Pavlová
    • 1
  • Dagmar Součkova
    • 1
  • Ivana Machácková
    • 1
  1. 1.Institute of Experimental BotanyCzechoslovak Academy of SciencesPraha 6Czechoslovakia

Personalised recommendations