Science in China Series C: Life Sciences

, Volume 48, Issue 2, pp 168–180 | Cite as

Comparative analysis of the pig BAC sequence involved in the regulation of myostatin gene

  • Zhengquan Yu
  • Yan Li
  • Qingyong Meng
  • Jing Yuan
  • Zhihui Zhao
  • Wei Li
  • Xiaoxiang Hu
  • Bingxue Yan
  • Baoliang Fan
  • Shuyang Yu
  • Ning Li


Myostatin (GDF8, MSTN) is a member of the transforming growth factor beta superfamily that is essential for proper regulation of skeletal muscle mass. In order to study its expression and regulatory mechanism deeply, we have presented a comparative analysis of about 170-kb pig BAC sequence containing the myostatin gene among pig, human and mouse. The genomic region is characterized by high interspersed repeats and low G+C content. As for the myostatin gene, a higher sequence similarity is found between human and pig than between these species and the mouse. One striking feature is that the structure of two TATA-boxes in the nearby downstream of CCAAT-box is identified in the promoter. Further analysis reveals that the TATA-box1 is responsible for the transcription in pig and human, but the TATA-box2 acts on the transcription in mouse. The other interesting feature is that two polyadenylation signal sequences (AATAAA) exist in 3’UTR of the pig myostatin gene. Moreover, a large number of potential transcription factor-binding sites are also identified in evolutionary conserved regions (ECRs), which may be associated with the regulation of myostatin. Many putative transcription factors play an important role in the muscle development, and the complex interaction between myostatin and these factors may be required for proper muscle development.


myostatin comparative analysis transcriptional factors muscle development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McPherron, A. C., Lawler, A. M., Lee, S. J., Regulation of skeletal muscle mass in mice by new TGF-beta superfamily member, Nature, 1997, 387: 83–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomas, M., Langley, B., Berry, C. et al., Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation, J. Biol. Chem., 2000, 275(51): 40235–40243.PubMedCrossRefGoogle Scholar
  3. 3.
    Yamanouchi, K., Soeta, C., Naito, N., Tojo, H., Expression of myostatin gene in regenerating skeletal muscle of the rat and its localization, Biochemical and Biophysical Research Communications, 2000, 270: 510–516.PubMedCrossRefGoogle Scholar
  4. 4.
    Kambadur, R., Sharma, M., Smith, T. P. L., Bass, J. J., Mutations in myostatin (GDF-8) in double muscled Belgian Blue and Piedmontese cattle, Genome Res., 1997, 7: 910–916.PubMedGoogle Scholar
  5. 5.
    Zimmers, T. A., Davies, M. V., Koniaris, L. G. et al., Induction of cachexia in mice by systemically administered myostatin, Science, 2002, 296: 1486–1488.PubMedCrossRefGoogle Scholar
  6. 6.
    Ji, S., Losinki, R. L., Cornelius, S. G. et al., Myostatin expression in porcine tissues: Tissue specificity and developmental and postnatal regulation, Am. J. Physiol., 1998, 275: R1265–1273.PubMedGoogle Scholar
  7. 7.
    Sonstegard, T. S., Rohrer, G. A., Smith, T. P. L., Myostatin maps to porcine chromosome 15 by linkage and physical analyses, Anim. Genet., 1998, 29(1): 19–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Strail, A., Kopecny, M., Genomic organization, sequence and polymorphism of the porcine myostatin (GDF8;MSTN) gene, Animal Genetics, 1999, 30(6): 468–470.Google Scholar
  9. 9.
    Jiang, Y. L., Li, N., Plastow, G. et al., Identification of three SNPs in the porcine myostatin gene (MSTN), Animal Biotechnology, 2002, 13: 173–178.PubMedCrossRefGoogle Scholar
  10. 10.
    Sulston, J., Du, Z., Thomas, K. et al., TheC. elegans genome sequencing project a beginning, Nature, 1992, 365: 37–41.CrossRefGoogle Scholar
  11. 11.
    Ansari-Lari, M. A., Oeltjen, J. C., Schwartz, S. et al., Comparative sequence analysis of a gene-rich cluster at human chromosome 6, Genome Res., 1998, 8: 29–40.PubMedGoogle Scholar
  12. 12.
    Kozak, M., An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs, Nuc. Acids Res., 1987, 15: 8125–8148.CrossRefGoogle Scholar
  13. 13.
    Kozak, M., An analysis of vertebrate mRNA sequence: Intimations of translational control, J. Cell Biol., 1991, 115: 887–903.PubMedCrossRefGoogle Scholar
  14. 14.
    Mount, S. M., A catalogue of splice junction sequences, Nucleic Acids Res., 1982, 10: 459–472.PubMedCrossRefGoogle Scholar
  15. 15.
    Pin, C. L., Konieczny, S. F., A fast fiber enhancer exists in the muscle regulatory factor 4 gene promoter, Biochem. Biophys. Res. Commun., 2002, 299: 7–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Langley, B., Thomas, M., Bishop, A. et al., Myostatin inhibits myoblast differentiation by down-regulating myoD expression, J. Biol. Chem., 2002, 277(51): 49831–49840.PubMedCrossRefGoogle Scholar
  17. 17.
    Spiller, M. P., Kambadur, R., Jeanplong, F. et al., The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD, Mol. Cell Biol., 2002, 22(20): 7066–7082.PubMedCrossRefGoogle Scholar
  18. 18.
    Denny, P., Swift, S., Connor, F., Ashworth, A., An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein, EMBO J., 1992, 11: 3705–3712.PubMedGoogle Scholar
  19. 19.
    Ikeda, T., Zhang, J., Chano, T., Mabuchi, A., Fukuda, A., Identification and characterization of the human long form of Sox5 (L-SOX5) gene, Gene, 2002, 298: 59–68.PubMedCrossRefGoogle Scholar
  20. 20.
    Marchat, L. A., Gomez, C., Perez, D. G. et al., Two CCAAT/enhancer binding protein sites are cis-activator elements of the Entamoeba histolytica EhPgp1 (mdr-like) gene expression, Cell Microbiol., 2002, 11: 725–737.CrossRefGoogle Scholar
  21. 21.
    Pan, Z., Hetherington, C. J., Zhang, D. E., CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte development, J. Biol. Chem., 1999, 274: 23242–23248.PubMedCrossRefGoogle Scholar
  22. 22.
    Garcia-Trevijano, E. R., Iraburu, M. J., Fontana, L. et al., Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis, Genes Dev., 1997, 11:436–450.CrossRefGoogle Scholar
  23. 23.
    Andreucci, J. J., Grant, D., Cox, D. M. et al., Composition and function of AP-1 transcription complexes during muscle cell differentiation, J. Biol. Chem., 2002, 277(19): 16426–16432.PubMedCrossRefGoogle Scholar
  24. 24.
    Morishita, R., Gibbons, G. H., Horiuchi, M., Kaneda, Y., Ogihara, T., Dzau, V. J., Role of AP-1 complex in angiotensin II-mediated transforming growth factor-beta expression and growth of smooth muscle cells: Using decoy approach against AP-1 binding site, Biochem. Biophys. Res. Commun., 1998, 243(2): 361–367.CrossRefGoogle Scholar
  25. 25.
    Segil, N., Roberts, S. B., Heintz, N., Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity, Science, 1991, 254(5039): 1814–1816.PubMedCrossRefGoogle Scholar
  26. 26.
    Di Lisi, R., Millino, C., Calabria, E. et al., Combinatorial cis-acting elements control tissue-specific activation of the cardiac troponin I genein vitro andin vivo., J. Biol. Chem., 1998, 273: 25371–25380.PubMedCrossRefGoogle Scholar
  27. 27.
    Lakich, M. M., Diagana, T. T., North, D. L., Whalen, R. G., MEF-2 and Oct-1 bind to two homologous promoter sequence elements and participate in the expression of a skeletal musclespecific gene, J. Biol. Chem., 1998, 273: 15217–15226.PubMedCrossRefGoogle Scholar
  28. 28.
    Xiao, Q., Kenessey, A., Ojamaa, K., Role of USF1 phosphorylation on cardiac alpha-myosin heavy chain promoter activity, Am. J. Physiol. Heart Circ. Physiol., 2002, 283: H213–219.PubMedGoogle Scholar
  29. 29.
    Chen, Y. H., Layne, M. D., Watanabe, M., Yet, S. F., Perrella, M. A., Upstream stimulatory factors regulate aortic preferentially expressed gene-1 expression in vascular smooth muscle cells, J. Biol. Chem., 2001, 276: 47658–47663.PubMedCrossRefGoogle Scholar
  30. 30.
    Lun, Y., Sawadogo, M., Perry, M., Autoactivation of Xenopus MyoD transcription and its inhibition by USF, Cell Growth Differ., 1997, 8: 275–282.PubMedGoogle Scholar
  31. 31.
    Thomas, P. S., Kasahara, H., Edmonson, A. M. et al., Elevated expression of Nkx-2.5 in developing myocardial conduction cells, Anat. Rec., 2001, 263(3): 307–313.PubMedCrossRefGoogle Scholar
  32. 32.
    Nishida, W., Nakamura, M., Mori, S. et al., A triad of serum response factor and the GATA and NK families governs the transcription of smooth and cardiac muscle genes, J. Biol. Chem., 2002, 277(9): 7308–7317.PubMedCrossRefGoogle Scholar
  33. 33.
    Kalenik, J. L., Chen, D., Bradley, M. E., Chen, S. J., Lee, T. C., Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1, Nucleic Acids Res., 1997, 25: 843–849.PubMedCrossRefGoogle Scholar
  34. 34.
    Walowitz, J. L., Bradley, M. E., Chen, S., Lee, T., Proteolytic regulation of the zinc finger transcription factor YY1, a repressor of muscle-restricted gene expression, J. Biol. Chem., 1998, 273: 6656–6661.PubMedCrossRefGoogle Scholar
  35. 35.
    Zheng, Z., Wang, Z. M., Delbono, O., Charge movement and transcription regulation of L-type calcium channel alpha(1S) in skeletal muscle cells, J. Physiol., 2002, 540: 397–409.PubMedCrossRefGoogle Scholar
  36. 36.
    Onyango, P., Miller, W., Lehoezky, J. et al., Sequence and comparative analysis of the mouse 1-megabase region orthologoud to the human 11p5 imprinted domain, Genome Res., 2000, 10: 1697–1710.PubMedCrossRefGoogle Scholar
  37. 37.
    Lander, E. S., Linton, L. M., Birren, B. et al., Initial sequencing and analysis of the human genome, Nature, 2001, 409: 860–892.PubMedCrossRefGoogle Scholar
  38. 38.
    Waterston, R. H., Lindblad-Toh, K., Birney, E. et al., Initial sequencing and comparative analysis of the mouse genome, Nature, 2002, 420: 520–562.PubMedCrossRefGoogle Scholar
  39. 39.
    Shibata, H., Yoda, Y., Kato, R. et al., A methylation imprint mark in the mouse imprinted gene Grf1/Cdc25Mm locus shares a common feature with U2afbp-rs gene: An association with a short tandem repeat and hypermethylated region, Genomics, 1998, 4930–4937.Google Scholar
  40. 40.
    Amarger, V., Nguyen, M., Laere, A. S. V. et al., Comparative sequence analysis of the INS-IGF2-H19 gene cluster in pigs, Mamm Genome, 2002, 13: 388–398.PubMedCrossRefGoogle Scholar
  41. 41.
    Boyle, A. L., Ballard, S. G., Ward, D. C., Differential distribution of long and short interspersed element sequence in mouse genome: Chromosome karyotyping by fluorescencein situ hybridization, Proc. Natl. Acad. Sci., 1990, 87: 7757–7761.PubMedCrossRefGoogle Scholar
  42. 42.
    Kundu, T. K., Rao, M. R., CpG islands in chromatin organization and gene expression, J. Biochem. (Tokyo), 1999, 125(2): 217–222.PubMedGoogle Scholar
  43. 43.
    Andersson, L., Archibald, A., Ashburner, M. et al., Comparative genome organization of vertebrates the first international workshop on comparative genome organization, Mamm. Genome, 1996, 7: 717–734.PubMedCrossRefGoogle Scholar
  44. 44.
    Gispert, S., Dutra, A., Lieberman, A., Friedlich, D., Nussbaum, R. L., Cloning and genomic organization of the mouse gene Slc23a1 encoding a vitamin C transporter, DNA Research, 2000, 7: 339–345.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang, L., Ge, L., Parimoo, S., Stenn, K., Prouty, S. M., Human stearoyl-CoA desaturase: Alternative transcripts generated from a single gene by usage of tandem polyadenylation sites, Biochem. J., 1999, 340: 255–264.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang, J., Ratovitski, T., Brady, J. P. et al., Expression of myostatin pro domain results in muscular transgenic mice, Mol. Reprod. Dev., 2001, 60(3): 351–361.PubMedCrossRefGoogle Scholar
  47. 47.
    Dias, P., Dilling, M., Houghton, P., The molecular basis of skeletal muscle differentiation, Semin. Diagn. Pathol., 1994, 11(1): 314.Google Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Zhengquan Yu
    • 1
  • Yan Li
    • 2
  • Qingyong Meng
    • 1
  • Jing Yuan
    • 1
  • Zhihui Zhao
    • 1
  • Wei Li
    • 2
  • Xiaoxiang Hu
    • 1
  • Bingxue Yan
    • 1
  • Baoliang Fan
    • 1
  • Shuyang Yu
    • 1
  • Ning Li
    • 1
  1. 1.State Key Laboratory for AgrobiotechnologyChina Agricultural UniversityBeijingChina
  2. 2.Beijing Genomics Institute / Genomics and Bioinformatics Center, Institute of Genetics and Development BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations