Advertisement

Science in China Series C: Life Sciences

, Volume 44, Issue 4, pp 373–382 | Cite as

Differential modulation by AMPA of signals from red- and green-sensitive cones in carp retinal luminosity-type horizontal cells

  • Ru Yang
  • Xiongli Yang
Article
  • 11 Downloads

Abstract

Intracellular recordings were made from luminosity-type horizontal cells (LHCs) in the isolated superfused carp retina and the effect of AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), a glutamate receptor agonist, on these cells was studied. AMPA suppressed the responses of LHCs driven by red-sensitive (R-) cones whereas it potentiated the responses driven by green-sensitive (G-) cones. The AMPA effect could be completely blocked by GYKI 53655, a specific AMPA receptor antagonist, indicating the exclusive involvement of AMPA-preferring receptors. The AMPA effect persisted in the presence of picrotoxin (PTX) or dihydrokainic acid (DHK), suggesting that the feedback from LHCs onto cones and glutamate transporters on cones may not be involved. It is suggested that there may exist different AMPA receptor subtypes with distinct characteristics on LHCs, which mediate signal transfer from R-and G-cones to LHCs, respectively.

Keywords

glutamate receptor cone signal horizontal cell retina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thoreson, W. B., Witkovsky, P., Glutamate receptors and circuits in the vertebrate retina, Prog. Retin. Eye Res., 1999, 18(6): 765.PubMedCrossRefGoogle Scholar
  2. 2.
    Monaghan, D. T., Bridges, R. J., Cotman, C. W., The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system, Annu. Rev. Pharmacol. Toxicol., 1989, 29: 365.PubMedCrossRefGoogle Scholar
  3. 3.
    Ozawa, S., Kamiya, H., Tsuzuki, K., Glutamate receptors in the mammalian central nervous system, Prog. Neurobiol., 1998, 54(5): 581.PubMedCrossRefGoogle Scholar
  4. 4.
    Wu, S. M., Yang, X. L., Functional characterization of amino acid neurotransmitters in the outer retina, Neurosci. Res., 1992, s117.Google Scholar
  5. 5.
    Maple, B. R., Gao, F., Wu, S. M., Glutamate receptors differ in rod-and cone-dominated off-center bipolar cells, Neuroreport, 1999, 10: 3605.PubMedCrossRefGoogle Scholar
  6. 6.
    Mangel, S. C., Ariel, M., Dowling, J. E., Effects of acidic amino acid antagonists upon the spectral properties of carp horizontal cells: circuitry of the outer retina, J. Neurosci., 1985, 5: 2839.PubMedGoogle Scholar
  7. 7.
    Zhang, D. Q., Yang, X. L., OFF pathway is preferentially suppressed by the activation of GABAA receptors in carp retina, Brain Res., 1997, 759: 160.PubMedCrossRefGoogle Scholar
  8. 8.
    Dowling, J. E., The Retina: An Approachable Part of the Brain, Cambridge, Mass: Belknap Press of Harvard University Press, 1987, 81–123.Google Scholar
  9. 9.
    Yang, X. L., Tauchi, M., Kaneko, A., Convergence of signals from red-sensitive and green-sensitive cones onto L-type external horizontal cells of the goldfish retina, Vision Res., 1983, 23: 371.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang, X. L., Tauchi, M., Kaneko, A., Quantitative analysis of photoreceptor inputs to external horizontal cells in the goldfish retina, Jpn. J. Physiol., 1982, 32: 399.PubMedGoogle Scholar
  11. 11.
    Tunnicliff, G., Glutamate uptake by chick retina, Biochem. J., 1975, 150: 297.PubMedGoogle Scholar
  12. 12.
    Tauchi, M., Yang, X., Kaneko, A., Depolarizing responses of L-type external horizontal cells in the goldfish retina under intense chromatic background, Vision Res., 1984, 24: 867.PubMedCrossRefGoogle Scholar
  13. 13.
    Kamermans, M., Spekreijse, H., The feedback pathway from horizontal cells to cones: A mini review with a look ahead, Vision Res., 1999, 39: 2449.PubMedCrossRefGoogle Scholar
  14. 14.
    Roska, B., Gaal, L., Werblin, F. S., Voltage-dependent uptake is a major determinant of glutamate concentration at the cone synapse: an analytical study, J. Neurophysiol., 1998, 80: 1951.PubMedGoogle Scholar
  15. 15.
    Lu, T., Shen, Y., Yang, X. L., Desensitization of AMPA receptors on horizontal cells isolated from crucian carp retina, Neurosci. Res., 1998, 31: 123.PubMedCrossRefGoogle Scholar
  16. 16.
    Yang, J. H., Maple, B., Gao, F. et al., Postsynaptic responses of horizontal cells in the tiger salamander retina are mediated byAMPA-preferring receptors, Brain Res., 1998, 797: 125.PubMedCrossRefGoogle Scholar
  17. 17.
    Partin, K. M., Mayer, M. L., Negative allosteric modulation of wild-type and mutant AMPA receptors by GYKI 53655, Mol. Pharmacol., 1996, 49: 142.PubMedGoogle Scholar
  18. 18.
    Yasui, S., Yamada, M., Djamgoz, M. B. A., Dopamine and 2-amino-4-phosphonobutyrate differentially modify spectral responses of H1 horizontal cells in carp retina, Exp. Brain Res., 1990, 83: 79.PubMedCrossRefGoogle Scholar
  19. 19.
    Furukawa, T., Yamada, M., Petruv, R. et al., Nitric oxide, 2-amino-4-phosphonobutyric acid and light/dark adaptation modulate short-wavelength-sensitive synaptic transmission to retinal horizontal cell, Neurosci. Res., 1997, 27: 65.PubMedCrossRefGoogle Scholar
  20. 20.
    Djamgoz, M. B. A., Petruv, R., Yasui, S. et al., Modulation of chromatic difference in receptive field size of H1 horizontal cells in carp retina: dopamine-and APB-sensitive mechanisms, Neurosci. Res., 1998, 30: 13.PubMedCrossRefGoogle Scholar
  21. 21.
    Yasui, S., Yamada, M., H1 horizontal cells of carp retina have different postsynaptic mechanisms to mediate short versus long-wavelength visual signal, Exp. Brain Res., 1989, 74: 256.PubMedCrossRefGoogle Scholar
  22. 22.
    Okada, T., Schultz, K., Geurtz, W. et al., AMPA-preferring receptors with high Ca2+ permeability mediate dendritic plasticity of retinal horizontal cells, Eur. J. Neurosci., 1999, 11: 1085.PubMedCrossRefGoogle Scholar
  23. 23.
    Shen, Y., Lu, T., Yang, X. L., Modulation of desensitization at AMPA receptors on isolated carp retinal horizontal cells by concanavalin A, cyclothiazide, aniracetam and PEPA, Neuroscience, 1999, 89: 979.PubMedCrossRefGoogle Scholar
  24. 24.
    Sommer, B., Keinänen, K., Verdoorn, T. A. et al., Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS, Science, 1990, 249: 1580.PubMedCrossRefGoogle Scholar
  25. 25.
    Mosbacher, J., Schoepfer, R., Monyer, H. et al., A molecular determinant for submillisecond desensitization in glutamate receptors, Science, 1994, 266: 1059.PubMedCrossRefGoogle Scholar
  26. 26.
    Derkach, V., Barria, A., Soderling, T. R., Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors, Proc. Natl. Acad. Sci. USA, 1999, 96: 3269.PubMedCrossRefGoogle Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  1. 1.Shanghai Institute of PhysiologyChinese Academy of Sciences and Institute of Neurobiology, Fudan UniversityShanghaiChina

Personalised recommendations