Folia Microbiologica

, 28:353 | Cite as

Proton extrusion inSaccharomyces cerevisiae mutants in very dilute suspensions

  • C. Pascual
  • C. Romay
  • K. Sigler


Substrate-induced H+ extrusion was studied in dilute (0.04–0.5 mg dry mass per mL) unbuffered suspensions ofS. cerevisiae. Wild-type strains 196-2 and K and 196-2-derived mutants altered in hexose transport, glucosephosphate isomerase, mannosephosphate isomerase, pyruvate kinase, and arho petite mutant were characterized as to growth, biochemical and H+-pumping properties. Their H+ extrusion differed, depending on strain, growth conditions, and the H+-efflux-inducing substrate; the efficiency of the process depended critically on the balance between substrate uptake, its dissimilation, attendant mobilization of energy sources and build-up of acidity sources in the cell, and the energy supply to H+excreting systems.


Fructose Hexose Pyruvate Kinase Efflux Rate Substrate Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alonso A., Pascual C., Herrera L.S.: Estudio de un mutante de transporte de hexosas en levadura panadera. III Forum Científico, Sección Ciencias Biol. y Química, p. 14, Havana 1980.Google Scholar
  2. Baňuelos M., Gancedo C.:In situ study of the glycolytic pathway inSaccharomyces cerevisiae.Arch. Microbiol. 117, 197 (1978).PubMedCrossRefGoogle Scholar
  3. Baňuelos M., Gancedo C., Gancedo J.M.: Activation by phosphate of yeast phosphofructokinase.J.Biol.Chem. 252, 6394 (1977).PubMedGoogle Scholar
  4. Borst-Pauwels G.W.F.H.: Ion transport in yeast.Biochim.Biophys.Acta 650, 88 (1981).PubMedGoogle Scholar
  5. Cibillo V.P.: Relationship between sugar structure and competition for the sugar transport system in baker’s yeast.J.Bacterial. 95, 603 (1968).Google Scholar
  6. Galzy P., Slonimski P.P.: Variations physiologiques de la levure au cours de la croissance sur l’acide lactique ou sur la glucose comme seule source de carbone.Compt.Rend. 245, 2423 (1987).Google Scholar
  7. Goffeau A., Slayman C.W.: The proton-translocating ATPase of the fungal plasma membrane.Biochim.Biophys.Acta 639, 197 (1981).PubMedGoogle Scholar
  8. Herrera L.S., Pascual C., Alvarez X.: Genetic and biochemical studies of phosphomannose isomerase deficient mutants ofSaccharomyces cerevisiae.Mol.Gen.Genet. 144, 223 (1976).PubMedCrossRefGoogle Scholar
  9. Herrera L.S., Pascual C.: Genetical and biochemical studies of glucosephosphate inomerase deficient mutants inSaccharomyces cerevisiae.J. Gen. Microbiol. 108, 305 (1978).Google Scholar
  10. Kano S., Markovitz A.: Induction of capsular polysaccharide synthesis by p-fluorophenylalanine inEscherichia coli wild type and strain with altered phenylalanyl soluble ribonucleic acid synthetase.J. Bacteriol. 93, 584 (1967).Google Scholar
  11. Kotyk A.: Properties of the sugar carrier in baker’s yeast. II. Specificity of transport.Folia Microbiol. 12, 121 (1967).CrossRefGoogle Scholar
  12. Noltmann E.A.: Phosphoglucose isomerase.Methods Enzymol. 9, 557 (1966).CrossRefGoogle Scholar
  13. Opekarová M., Sigler K.: Acidification power: Indicator of metabolic activity and autolytic changes inSaccharomyces cerevisiae.Folia Microbiol. 27, 395 (1982).CrossRefGoogle Scholar
  14. Pascual C., Alonso A., Pérez C., Herrera L.S.: Glucose and fructose consumption in a phosphoglucoseisomeraseless mutant inSaccharomyces cerevisiae.Arch.Microbiol. 121, 17 (1979).CrossRefGoogle Scholar
  15. Pascual C., Kotyk A.: A simple spectrophotometric method for determining proton release from yeast cells.Anal.Biochem. 123, 201 (1982).PubMedCrossRefGoogle Scholar
  16. Polakis E.S., Bartley W., Meek G.A.: Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources.Biochem.J. 97, 298 (1965).PubMedGoogle Scholar
  17. Sigler K., Knotková A., Kotyk A.: Factors governing substrate-induced generation and extrusion of protons in the yeastSaccharomyces cerevisiae.Biochem.Biophys.Acta 643, 572 (1981a).PubMedCrossRefGoogle Scholar
  18. Sigler K., Kotyk A., Knotková A., Opekarová M.: Processes involved in the creation of buffering capacity and in substrate-induced proton extrusion in the yeastSaccharomyces cerevisiae.Biochem.Biophys.Acta 643, 593 (1981b).CrossRefGoogle Scholar
  19. Slonimski P.P., Perrodin G., Croft J.H.: Ethidium bromide-induced mutation of yeast mitochondria: complete transformation of cells into respiratory deficient nonchromosomal petites.Biochem.Biophys.Res.Commun. 30, 232 (1968).PubMedCrossRefGoogle Scholar
  20. Sols A., de la Fuente G., Villab-Palasi C., Asensio C.: Substrate specificity and some other properties of baker’s yeast hexokinase.Biochim.Biophys.Acta 30, 92 (1958).PubMedCrossRefGoogle Scholar
  21. Winne D.: Unstirred layer, source of biased Michaelis constant in membrane transport.Biochim. Biophys.Acta 298, 27 (1973).PubMedCrossRefGoogle Scholar
  22. Winne D.: Correction of the apparent Michaelis constant, biased by an unstirred layer, if a passive transport component is present.Biochim.Biophys.Acta 464, 118 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1983

Authors and Affiliations

  • C. Pascual
    • 1
  • C. Romay
    • 2
  • K. Sigler
    • 2
  1. 1.Centro National de Investigaciónes CientíficasHavanaCuba
  2. 2.Department of Cell Physiology, Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations